Overview of Machine Learning

Dong Wang

PART I: Introduction

We hold the belief that poetry generation (and other artistic activities) is a pragmatic process and can be largely learned from past experience...

Incomplete understanding you may have

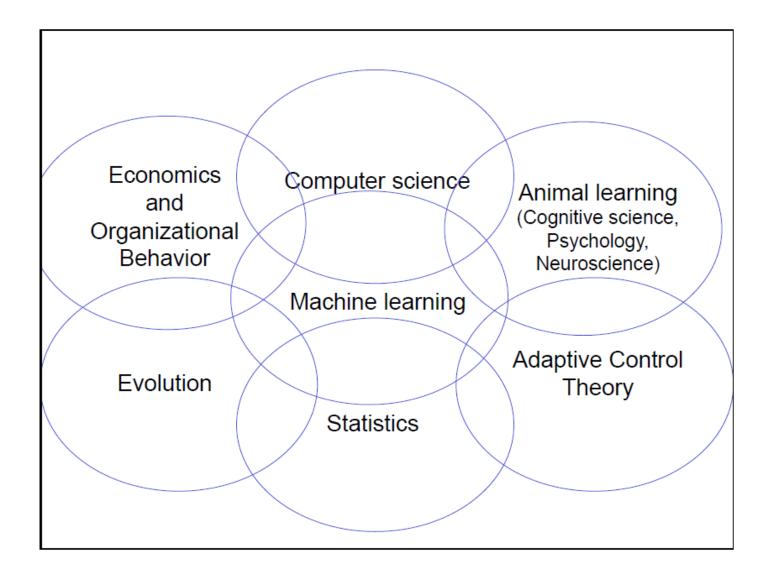
- Machine learning is a set of tools
- Machine learning is a bunch of algorithms
- Machine leraning is pattern recognition
- Machine learning is artificial intelligence

What is machine learning?

- Machine learning is a "Field of study that gives computers the ability to learn without being explicitly programmed" --1959, <u>Arthur Samuel</u>
- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E. -<u>Tom M. Mitchell</u>

Contributors to ML

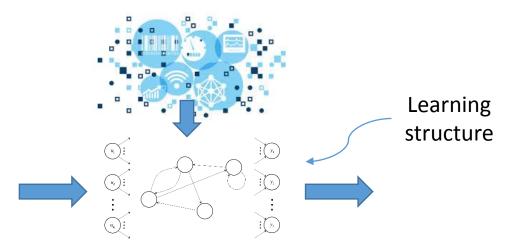
- Statistics
- Brain models
- Adaptive control theory
- Psychological models
- Artificial intelligence
- Evolutionray models



Tom M. Mitchell, Machine Learning Department Carnegie Mellon University, Machine Learning 10-701, January 11, 2011. http://www.cs.cmu.edu/~tom/10701_sp11/slides/DTreesAndOverfitting-1-11-2011_final.pdf

What is machine learning?

- Machine learning is a computing framework that integrates human knowlege and empirical evidence. It is a way of conceptual design: give some model structure (prior), then the algorithm learns within it by experiencing.
- Knowledge (prior) and empirial evidence (samples) are two ends of the spectrum of resources in ML. Different approaches reside in different trade-off positions.
- Ingredients
 - Task
 - Data
 - Learning structure
 - Learning algorithm



Task

• Category

- From AI perspective
 - Perception
 - Induction
 - Generation
- From technical perspective
 - Predictive
 - Regression
 - Classification
 - Descriptive
 - Clustering
 - Density estimation
- Objective function
 - xEnt,MSE,Fisher score,sparsity, information
 - Task-dependent (MPE in ASR, e.g.)

Data

- Complexity of data
 - Binary, category, continuous, scale, vector, graph, natural object
 - Dependent or independent
 - Complete or incomplete
 - Dyanics
- Data representation
 - Feature extraction
 - Dimension reduction
 - Data selection

Learning structure

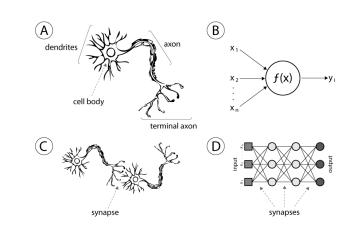
- Functions
- Networks (NN, graph)
- Logic programs and rule sets
- Finite-state machines
- Grammars
- Problem solving systems

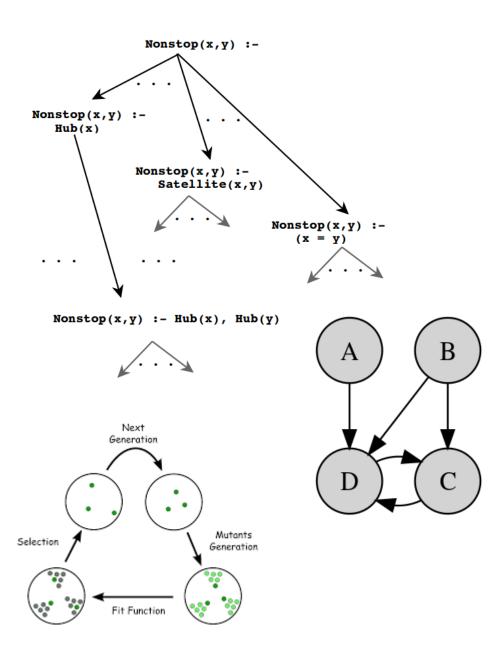
Learning algorithms

- Supervision
 - Supervised learning, unsupervised learning, semisupervised learning, reinforcement learning
- Model
 - Probabilistic model (GMM,HMM,pLDA,...)
 - Neural model (MLP,LSTM,...)
 - Distance-based model (kNN, metric learning, SVM)
 - Information-based model (ME, CART,...)
 - Other criteria (LDA,...)
- Learning approach
 - Direct solution
 - Neumerical optimization
 - Evolution

Four paradigms

- Symbolic learning
 - Inductive Logic Programming
- Bayesian learning
- Neural learning
- Evolutionary learning





Why learn?

- We can not design much
 - It is hard to design everything (we don't know the exact process)
 - It is hard to design even one thing (limited knowledge, dynamics, inaccuracy)
 - Trade-off between "explicit design with ASSUMPTION" and "conceptual design with approximation"
 - It is a black box with unknown process, but could be better than a white box with presumebly known (but in fact wrong or inaccurate) process.
 - Let data tells you more!
- Intelligence is from experience.
- It is the way we human do every day.

Example 1: Monkey master

- Task: get the banana
- Symbolic approach
 - design feature, knowlege structure, induction rules, and do search
- Learning approach
 - Let the monkey try many times...
 - Can play games very well

http://www.slideshare.net/ManjeetKamboj/monkey-banana-problem-in-ai Human-level control through deep reinforcement learning, Nature

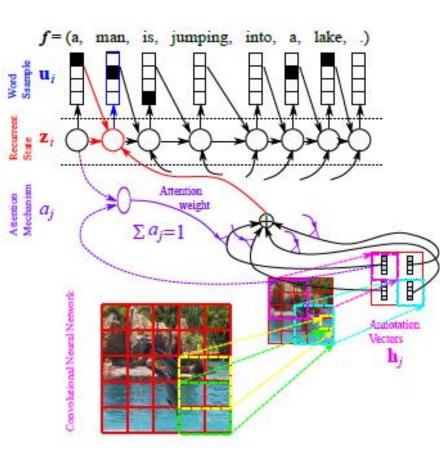
Monkey & Banana Problem

Submitted To:-Lect. Jagdeep Singh Gill DBIMCS Submitted By:-Manjeet Rani RollNo.-54 Divya Kumari RollNo.-121

If the monkey is cleaver enough, he can reach the bananas by placing the chair directly below the bananas and climbing on the top of the chair.

Example 2: Image semantics

- CV approach:
 - edge detection, image participation, pattern matching
- Learning approach:
 - End to end



A woman is throwing a frisbee in a park.

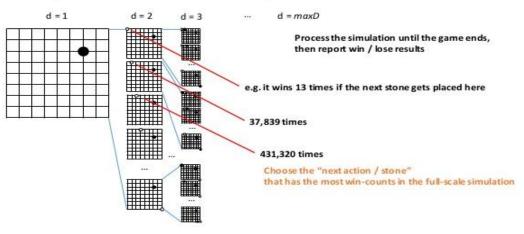
A little <u>girl</u> sitting on a bed with a teddy bear.

Kyunghyun Cho, Aaron Courville and Yoshua Bengio?, Describing Multimedia Content using Attention-based Encoder–Decoder Networks, arxIV

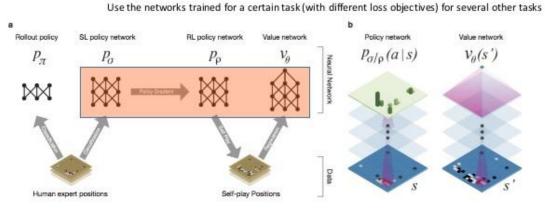
Example 3: Alapha Go

- Al approach: heuristic path search.
- Learning approach: not know exact things, but know more inexact things.

Computer Go AI – An Implementation Idea?



Takeaways



http://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works

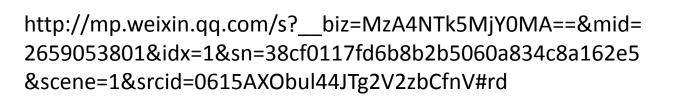
Example 4: Robot

- Human design approach:
 - Compute gravity, arm angle, force, velocity, make decision
 - Do we do that?
- Learning from experience

http://www.inf.ed.ac.uk/teaching/courses/mlsc/

Example 5: Financial trading

- Financial approach:
 - Design model, select parameters, predict, game theory..
- ML approach:
 - Learn trader's operation
 - Learn time series
 - Reinforcement learning



Where is the frontend?

- Deep and complex learning with big data and computing graph
- Human-like learning (one-shot, collaborative, transfer,...)
- Creativity (motivation, emotion, artist)

Can Turing machine be curious about its Turing test results? Three informal lectures on physics of intelligence https://arxiv.org/abs/1606.08109

Change your mind

- If you are from engineering
 - Pay more attention on theory
 - Don't try
- If you are from mathematics
 - Refrain from rigorous equation design
 - But pay attention to rigorous statistics equation design
 - Pay more attention on data, randomness
 - Do try

FAQ

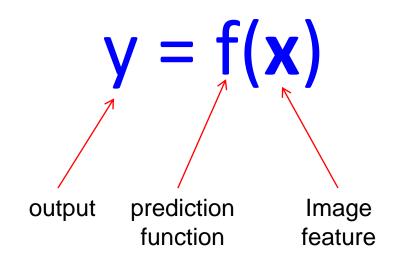
- Is ML hard?
 - Yes, many many algorithms, theories, change quickly, all confusing
 - No, in most cases the algorithms follow similar threads and easy to understand
 - And it is fascinating!
- What you need to prepare?
 - Algebra, particlarly matrix operations and eigen analysis
 - Statistics, particularly Gaussian
 - Prepare to thinking, global thinking
 - Focus, and agile to new things
 - Hard work

• QA

PART II: Basic concepts

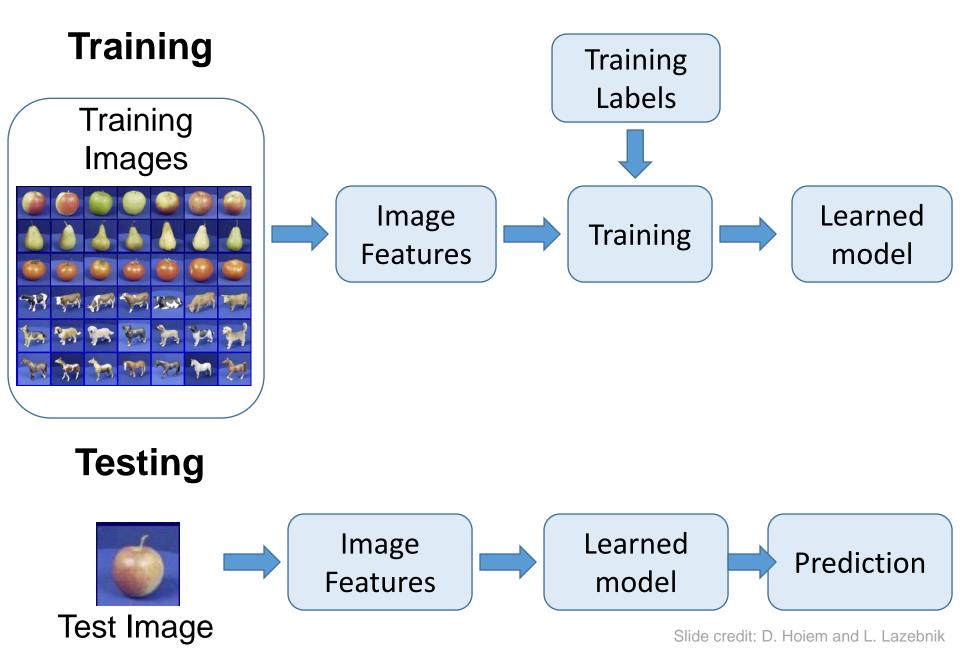
Learning is a set of trade off : data and model, complexity and efficiency, memory and time, fitting and generalization....

Machine learning



- Training: given a training set of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Basic steps



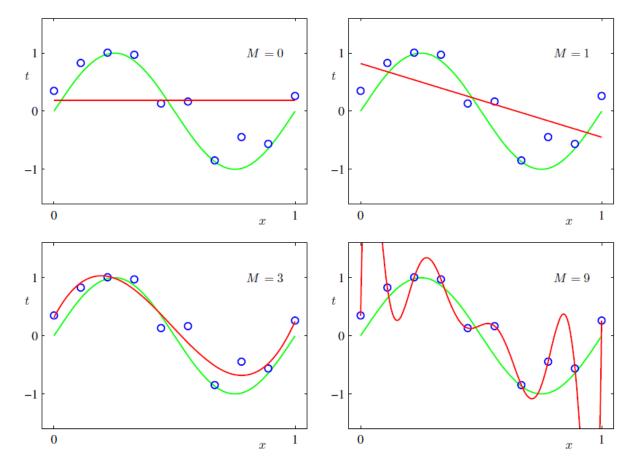
Fitting and generalization

Training set (labels known)

Test set (labels unknown)

• How well does a learned model generalize from the data it was trained on to a new test set?

What model to use?



PRML, Bishop, Fig.1.4

Bias-Variance Trade-off

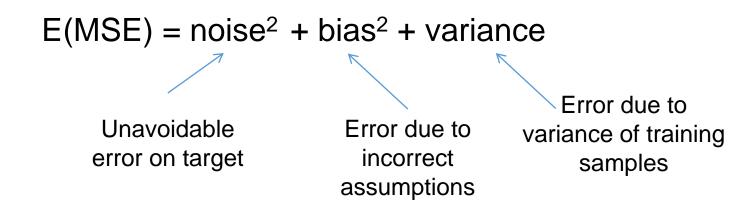
• Let cost function Prediction $\mathbb{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt.$ Noise on t

$$\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} \\ = \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} \\ + 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.$$

$$\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}\right] \\ = \underbrace{\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}}_{(\text{bias})^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2}\right]}_{\text{variance}}.$$

PRML, Bishop, Eq 3.37,3.39, 3.40

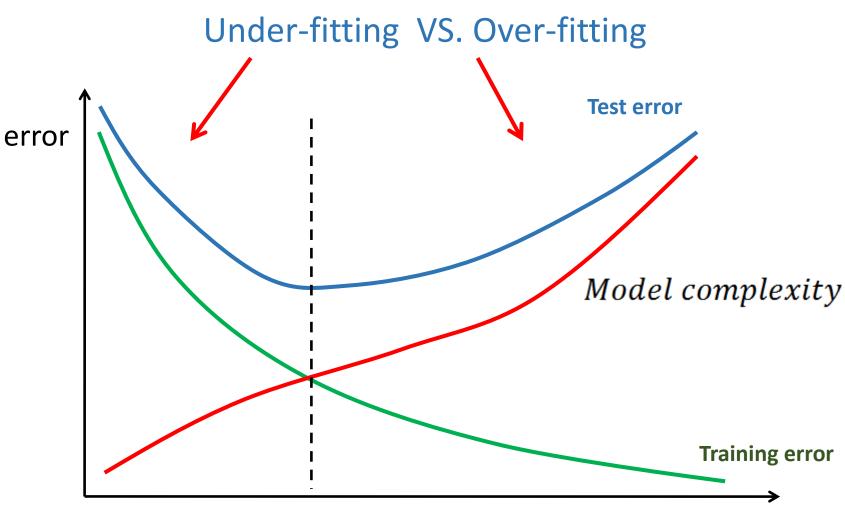
Bias-Variance Trade-off



Training and generalization

- Components of training error
 - **Bias:** how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Noise: error due to the target randomness, e.g., measure inaccuracy or incorrect labels
- Additional componet of generalization error
 - Variance: how much models estimated from different training sets differ from each other

Training and generalization



Underfitting: model is too "simple" to represent all the relevant class characteristics High bias and low variance High training error and high test error **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data Low bias and high variance Low training error and high test error

of parameters

Occam's razor

- Prefer simplest hypothesis that fits the data
- Various regularizations to enforce the data simpler
 - Constraints on task
 - Easier training
 - Better statistics

No free lunch...

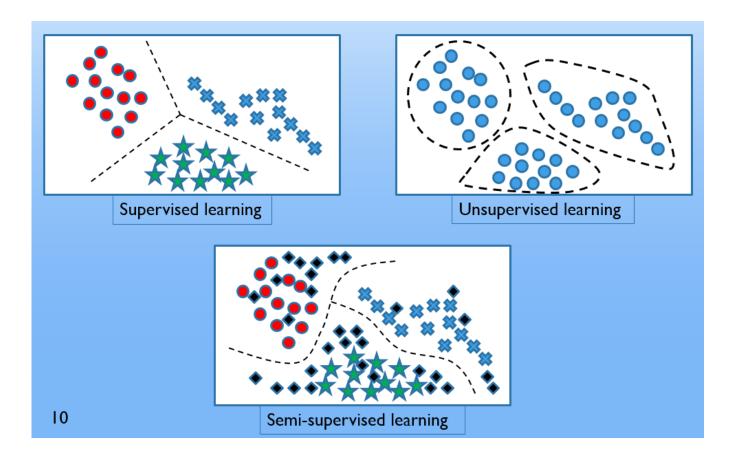
- No classifier is inherently better than any other: you need to make assumptions to generalize
- The better the assumption fits the data, the better the model.

How to deal with a given task?

- Set objective function: encodes the right loss for the problem
- Set model structure: makes assumptions that fit the problem
- Set regularization: right level of regularization
- Set training algorithm: can find parameters that maximize objective on the training set
- Set inference algorithm: can solve for objective function in evaluation

Some arguments

- Linear & nonlinear
- Supervised & unsupervised
- Genreative model & discriminative model
- Bayeisan & neural



Some typical models

- Supervised learning categories and techniques
 - Linear (linear regression, logistic regression)
 - Nolinear (SVM, NN)
 - Parametric (Probabilistic functions)
 - Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models (HMM), Probabilistic graphical models
 - Non-parametric (Instance-based functions)
 - K-nearest neighbors, Kernel regression, Kernel density estimation, Local regression
 - Classification and regression tree (CART), decision tree
 - Aggregation
 - Bagging (bootstrap + aggregation), Adaboost, Random forest

Some typical models

- Unsupervised learning categories and techniques
 - Clustering
 - K-means clustering
 - Spectral clustering
 - Density Estimation
 - Gaussian mixture model (GMM)
 - Graphical models
 - Dimensionality reduction
 - Principal component analysis (PCA)
 - Factor analysis

Some resources

- New member reading list
 - <u>http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/New_member_reading_l_ist</u>
- Research tools
 - <u>http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/Public_Research_Tools</u>
- Free data
 - <u>http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/Data_resources</u>

• Q&A