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About me

* Dong Wang
* Associate professor at Tsinghua University
e Deputy director of CSLT@Tsinghua University
e Chair of APSIPA SLA

* Brief resume
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2004-2006: IBM China
2006-2010: PhD candidate and Marie Curie Fellow at University of Edinburgh, UK
2010-2011: Post-doc Fellow at EURECOM, France
2011-2012: Nuance, US
2012- present: Tsinghua University
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The talk is about...

e Can we discover fundamental speaker features?



Two things we will talk

e How to extract features
e How to use those features



Deep Feature Learning



A classical view: variation compression

* Variation: phonetics, acoustics, physical, pysiological, emotional

* Duration is a very special variation

speech —

Feature Extraction

X

Speaker modeling |—— score

X

Variation removal

Variation modeling




Feature-based approach

speech — - | Feature Extraction || Speaker . score
modeling

* Powerful feature plus simple model
e Short-term features (MFCC, PLP)
* Voice source features (LP)
» Spectral-temporal features (delta, or long-term feature)
* Prosodic features: FO, speaking rate, phone duration
* High-level features: usaga of words and phones, pdf of articulary or acoustic units



Feature-based approach

speech — - | Feature Extraction || Speaker . score
modeling

* Long term features tend to be changed by speaking style
* Short term features are noisy, so require probabilistic models



Model-based approach

speech ——

Feature
Extraction

Speaker modeling

* Primary feature plus comprehensive models

* GMM-UBM
* JFA/i-vector

—— Score



Model-based approach

Extraction

Speaker modeling

* Principles

* Using probabilistic model to address variation

* Length, residual noise...

—— Score



Who won? A historical perspective

* In short, model-based approach largely wins
* Long-term and complex features often vary much
» Carefully designed features are fragile
* Most importantly, they are hard to model (we come back later).

e Simple features plus a probabilistic model worked the best



What is means?

Speaker characteristics are probabilistic patterns!

UBM component

2| Adapted
component

-4 -2 0



But it is true?

* This ‘inference’ is based on experimental results
* Perceptual intuition seems an ‘a’ is discriminative

* We still believe some fundamental features exist, but:

* Need a new approach to extract them
* Need a new approach to use them



Deep Feature learning

Stacked filterbank

eneray features. d-vector is the averaged activations

from the last hidden layer.
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Fully-connected maxout hidden layers.
The last two layers drop 0.5 activations.

0

Output layer is removed in
enrollment and evaluation.

e Learn speaker-dependent features driven by speaker discrimination
* Frame-based representation, average-based back-end

E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez- Dominguez, “Deep neural networks for small footprint text-dependent speaker verification,” ICASSP 2014.



More dedicated structure
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Figure 1: The DNN structure used for deep speaker factor inference.

L.L et al, Deep Speaker Feature Learning for Text-independent Speaker Verification, Interspeech 2017.



Very discriminative short-term features
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L.L et al, Deep Speaker Feature Learning for Text-independent Speaker Verification, Interspeech 2017.



Systems | Metric | 20 frames | 50 frames | 100 frames

1-vector | Cosine 30.01 18.23 11.14
LDA 29.47 15.96 8.64
PLDA 29.29 15.71 8.34

d-vector | Cosine 7.68 6.67 4.61
LDA 7.88 4.72 3.02
PLDA 20.81 15.02 8.98

* L.Letal, Deep Speaker Feature Learning for Text-independent Speaker Verification, Interspeech 2017.




What is means?

Speaker characteristics are largely short-term patterns!



That is really interesting

* Our personalities can be determined in 0.3 second

* We can largely factorize/manipulate speech signals based on short
spectrum



Let’s discriminate cough and laugh

DER%
Cough | Laugh | ‘Hmm’ | ‘Tsk-tsk’ | ‘Ahem’ | Sniff
20.20 20.71 19.70 42.42 26.26 35.86

EER %
Systems | Metric | Cough | Laugh | ‘Hmm’ | “Tsk-tsk’ | ‘Ahem” | Sniff
1-vector Cosine 23.42 27.69 15.71 29.70 18.12 37.78
LDA 26.14 27.99 15.54 31.79 20.83 37.74
PLDA 27.82 25.79 14.28 33.57 21.85 34.76
d-vector | Cosine 8.89 12.43 5.88 16.75 10.44 11.91
LDA 8.33 11.20 6.76 15.95 9.71 12.44
PLDA 10.26 15.48 7.28 17.85 13.16 12.93

* Miao Zhang, Yixiang Chen, Lantian Li and Dong Wang, "Speaker Recognition with Cough, Laugh

and "Wei'", APSIPA 2017
* Miao Zhang, Xiaofei Kang, Yanging Wang, Lantian Li, Zhiyuan Tang, Haisheng Dai, Dong Wang,
"HUMAN AND MACHINE SPEAKER RECOGNITION BASED ON SHORT TRIVIAL EVENTS", ICASSP

2018



Let’s do speech factorization

Phone Speaker Emotion

l Emotion factor

AER

Linguistic factor *

ASR

Speech signal

Lantian Li, Dong Wang, Yixiang Chen, Ying Shi, Zhiyuan Tang, "DEEP FACTORIZATION FOR SPEECH
SIGNAL", ICASSP 2018



Completness of the factorization
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Figure 3: The architecture for spectrum reconstruction.

Lantian Li, Dong Wang, Yixiang Chen, Ying Shi, Zhiyuan Tang, "DEEP FACTORIZATION FOR SPEECH
SIGNAL", ICASSP 2018



Truly factorized

120
100

Lantian Li, Dong Wang, Yixiang Chen, Ying Shi, Zhiyuan Tang,
SIGNAL", ICASSP 2018
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Segmentation
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Human-music classification
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Compare to End-to-end learning

accept / reject X ? !lf
1
. - . score
logistic regression Linear Layer T
|
T NIN Layer L(icml‘ﬂl » xlcsl)
Score Function =
Temporal Pooling
cosine similarity N T
5 e DNN DNN
Speaker Model — kaycr [ ) A
Spesker average
Representation ? ? features enroll utt(s) test utt
DNN/LSTM (a) DNN Architecture (b) Scoring Schema
4 t
evaluation __| enrollment enrollment
utterance utterance 1 --- utterance N

D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y.
Carmiel, and S. Khudanpur, “Deep neural network-based
speaker embeddings for end-to-end speaker verification,” in
SLT’2016

G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-
end text-dependent speaker verification,” in Acoustics,
Speech and Signal Pro-cessing (ICASSP), 2016



Compared to x-vector

A trade-off between feature learning and end-to-end
Specifically good for speaker recognition
New model/architecture for speaker embedding

[ Speaker IDs j
(O O ..... O OJ
Utterance-level
Speaker embedding [O O e O Q]
S’tatisticls é l
WM, Oy ( Pooling layer )
(L80--00)

Frame-level

feature learning (O Q-0 Oh

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors: Robust dnn embeddings for
speaker recognition,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP)



Recent advance: phone-aware training
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_ Fully-connected sigmoid hidden layers.

Qutput layer is removed in
enrollment and evaluation.

Lantian Li, Yiye Lin, Zhiyong Zhang, Dong Wang, "Improved Deep Speaker Feature Learning for Text-Dependent Speaker
Recognition", APSIPA 2015



Recent advance :Full-info training

— e — — — — — — — — — —— ——— ——— — —

| Convolutional (CN) Time-delay (TD) Feature |
| Component Component Layer :
: |
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Lantian Li, Zhiyuan Tang, Dong Wang, "FULL-INFO TRAINING FOR DEEP
SPEAKER FEATURE LEARNING", ICASSP 2018.



Recent advance :Gaussian constrained
earning

( Speaker IDs K Cm“i;;’:mp N Speaker IDs )
Gaussian-constrained
training
0000 0000
Utterance-level - Feed-forward - Frame-level
Speaker embedding [ Network Speaker embedding
00-~00) 0000
Statistics { I
{, O
i } [ Pooling layer ) [ Fully-Connected layer )
{
0 0---00) 0000
Frame-level - Feed-forward - Frame-level
feature learning OQ - OO0 Network OO0 o)e) feature learning
—— !
A t
X, % %) - - }
(a). x-vector (b). d-vector

Lantian Li,Zhiyuan Tang,Ying Shi,Dong Wang, "Gaussian-Constrained Training for
Speaker Verification", ICASSP 2019



Recent advance: Phonetic attention
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Recent advance: dictionary learning

E ={e,---ec}

Encoded Vector

I

Aggregate

‘rfc — I"f _ uc/ \ wtc

Residuals Assign Weights

— |

Variable-length Input

po={p, - pe} ﬁ

{1:113:2:"” 13:15}

Exploring the Encoding Layer and Loss Function in End-to—End Speaker and Language Recognition System, Weicheng Cai,
Jinkun Chen, Ming Li, Odyssey, 2018.



https://www.isca-speech.org/archive/Odyssey_2018/abstracts/26.html

Recent advance : Max margin

'y
. A (mn m, m, . CLomy, )
A My, My, My . . .My,
S =
L]
A . m, m, m, . . M)
> >

Lantian Li, Dong Wang, Thomoas Fang Zheng, "Max-Margin Metric Learning for
Speaker Recognition”, ISCSLP 2016



Recent advance: Angle loss

| Loss Function | Decision Boundary
Softmax Loss (W1 —Wa)x+by —ba=0
2D Hypersphere Modified Softmax Loss |[z||(cos 61 —cosf2)=0

Manifold ||| (cos mB1 — cos 2) =0 for class 1

||z|| (cos 61 — cos mfz) =0 for class 2

A-Softmax Loss

* W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface:
Deep hypersphere embedding for face recognition,” in The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017

« Exploring the Encoding Layer and Loss Function

Euclidean Margin Loss ~ Modified Softmax Loss  A-Softmax Loss (m=2) in End-to-fnd Speaker and Language Recognition

System, Weicheng Cai, Jinkun Chen, Ming Li,

Odyssey, 2018.

3D Hypersphere
Manifold




Conclusions for part I:

* Model-based won feature-based approach in history
* Deep learning learns short-term frame-based foundamental features

* The learned features can do many interesting things™



Feature/Embedding Normalization



Motivation

* We have (partly) solved the problem of learning speaker features

* Now we move to how to use them

Right now, they are mostly used as usually features

For frame-based, stack to utterance-based

For utterance-based, treated as i-vector and employ LDA/PLDA.
But are these correct and optimal?



Starting from GMM-UBM

Speaker

GMM

D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted Gaussian mixture models, ”
Digital signal processing, vol. 10, no. 1-3, pp. 19-41, 2000.



't is a generative model

* Introduce strcutre (shared m, 2_,m)
* Support limited data
* Represent speakers as vectors

.................



Factorization view

Embedding!!

X; =m_,+ Dzc¢ H &

z=N(0,1) ;.=N(0,Z.);c=Multi(rm)




i-vector: More structured factorization

* Embedding!
Low dimensional
Component dependent

X =mc+[T@c + g

w = N(0,1) ;e.=N(0,Z_);c=Multi(m)

N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor analysis for

/ speaker verification, ” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19,
. no. 4, pp. 788 -798, 2011.



Key properties )
* Generative model, relying on o
Bayesian inference
* Pseduo-Linear Gaussian (@)
* Two layers (shallow) "
. Extended PPCA B /1 ‘t__L
p(t)
7]

* Weakly discriminative

(d)



Improving discrimination

* WCCN
* LDA

* Partly generative
 Shared-variance Gaussian
 Mean as parameters

* PLDA
* Fully generative
* Shared-variance Gaussian
* Mean as Gaussian variables



PLDA

 Linear Gaussian

 Generative model, but

. . . . . M2
discriminatively trained (LN
* Discriminative decision b . e
, e Embedding!
Bayesian rule + Low dimensional

More discriminative

\\ W / :
t=u-+Fu+Wx+eg / “//

//'y,// C2

u~N(0.I), x~N(0.I), € ~N(0,.0°1). (c)

S. Toffe, “Probabilistic linear discriminant analysis, ” Computer Vision - ECCV 2006, pp. 531 - 542,
2006.



I-vector and PLDA is consistent

* PLDA assumption
* Gaussian prior
e Gaussain conditional
* Hence Gaussian marginal

* i-vectors are mostly Gaussian



Neural-based embedding

( Speaker IDs ] 4== Cross;:stropy — ( Speaker IDs )
s ™ . VN
Utterance-level | L J - Feed-forward — L J Frame-level
Speaker embedding Network i Speaker embedding
[ O O - O Oj [ O O e O Q]
Statistics [
, O}
{'u ! [ Pooling layer J [ Full-Connected layer J
[O () woees OO} [O () wee O OJ
Frame-level ' - Feed-forward - Frame-level
feature learning {O O wooe OO Network [O ) oo O O] feature learning
Acoustic X i
- 2o o X -— features - L A

(a). x-vector

E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-Dominguez,

textdependent speaker verification, ”
Conference on. IEEE, 2014, pp. 4052 - 4056.

(b). d-vector

“Deep neural networks for small footprint
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.




Properties of neural embeddings

* Inferred from discriminative models (differnet from i-vectors)
* Less probabilistic meaning (different from i-vectors)
* Highly discriminative (different from i-vectors)



An interesting observation

Cosine EER PLDA EER LDA PLDA
d-vector 38.39% 17.71% 9.511%
X-vector 15.67% 9.087% 3.157%
d-vector-LDA 12.94% 9.665% 9.511%
x-vector-LDA 5.198% 3.735% 3.157%

ny LDA works?
ny PLDA works?

ny LDA+PLDA works?




Why discriminative embeddings need
discriminative back-end?




Because of normalization...

* Normalization
 Different speaker embeddings should have identical covariance(WCCN)
» Different speaker scores (own, imposter) should have identical variance (ZT norm)

* Normalization is important for generalization
* Normalization is important for thresholding




Review LDA/PLDA

* LDA
* Partly generative
* Shared-variance Gaussian * The assumptions of these
* Mean as parameters models regularize the
* PLDA embeddings, hence scores....

* Fully generative
 Shared-variance Gaussian
e Mean as Gaussian variables

¥ mm) &




Therefore...

e LDA works
e PLDA works

Cosine EER PLDA EER LDA PLDA
d-vector 38.39% 17.71% 9.511%
X-vector 15.67% 9.087% 3.157%
d-vector-LDA 12.94% 9.665% 9.511%
x-vector-LDA 5.198% 3.735% 3.157%




But why LDA+PLDA works?

* PLDA does not only normalize
per se, but also requires
normalization.

* Prior is Gaussian, conditional is
Gaussian, and marginal is
Gaussian.

* LDA thus helps PLDA

t=pu+Fo+Wx+e&

u~N(0,I), x~N(0.I), € ~N(0,6°1).

Cosine EER PLDA EER LDA PLDA
d-vector 38.39% 17.71% 9.511%
X-vector 15.67% 9.087% 3.157%
d-vector-LDA 12.94% 9.665% 9.511%
x-vector-LDA 5.198% 3.735% 3.157%




Normalization test

e Skew and Kurt

Skew Kurt
d-vector 0.1092 -0.11609
X-vector -0.04228 -0.3603
d-vector-LDA | -0.005515 0.028395
x-vector-LDA | -0.01074 -0.0089
3 4
Skew(x) = El(x _‘3“'33) | Kurt(z) = Elx _4“'3:}
o o5




Why LDA+PLDA works?

* LDA makes the conditional embeddings more Gaussian, hence suitable for
PLDA.



PCA also works

* LDA regurlize conditional distribution

* PCA regularize marginal distribution

Cosine

PCA

PLDA

L-PLDA

X-vector

15.67

16.17

9.09

3.12

P-PLDA
4.16




LDA/PCA does not work for ivector+PLDA

e j-vector is Gaussian constrained (marginally)

3.672

i-vector 3.744 4.032 4.536
X-vector 5.256 4.104 4.032 4.004 3.888




Quick summary

* j-vector is probabilistic embedding, and d/x vector is neural embedding.
* i-vector is regularized but not discriminative, and d/x vector is the opposite.

* PLDA works in both i-vector and d/x vectors, but perform differently: former is
discrimination, latter is normalization.

* PCA and LDA help PLDA, by providing normalized vectors: former is via
marginalized Gaussian, latter is via conditional Gaussian.



Problem of PCA/LDA normalization

* PLDA requires prior and conditional to be Guassian; neither PCA nor
LDA matches all.

* Linear shallow models cannot derive Gaussian prior/conditional with
complex observed marginal and observed conditional of d/x vectors.

L i
w R o
g'*sr»..

Conditional
Marginal



Moving to distribution mapping

* A complex distribution can be generated from a simple distribution
with a complex transforming.

da

log p(x) = log p(z) + log |det




We therefore hope a deep generative model

* That can use Gaussian _.# \
latent code to generate s

complex d/x vectors.

* The latent code will be
used as normlized vectors.

* The noramlized vectors
will be more PLDA
ameable. 7

Latent code d/x vector



But how do we genreate the code?

* A wake/sleep game. NN encod
encoder

* A stochastic VB approach
for approximation. /_\

* VAE architecture. & .

")
o
o

Latent code d/x vector

Hinton G E, Dayan P, Frey B J, et al. The" wake-sleep" algorithm for unsupervised neural networks[J]. Science, 1995, 268(5214): 1158-1161.
D. P. Kingma and M. Welling, “Auto—encoding variational bayes, ” arXiv preprint arXiv:1312.6114, 2013.



VAE Architecture

* Roughly regularize

marginal distribution e @ wvon I
as Gaussian. Q

* Deal with complex o_, / \g_, f(2) _.o

observed marginal.
* Extended pesudo-VAE.

\ q(z|x) o/ \ p(x|z) /

L(f.9) = > {-Dxrlg(zla:)||p(2)] + Eq(zje,) [Inp(a:]2)]}

1



Further constraine conditional
°~N(0,1)

* Conhensive loss, like O |
central loss and 0-— . SONG o -0
Gaussian-constrained N

training. o I

p(z]s(x))
o

Le(f.9) = Y mp(u(@)ls@)) = 3 N (u(2): s(2), 1

1

e W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss function in end-to—end speaker and language

recognition system,” in Proc. Odyssey 2018 The Speaker and Language Recognition Workshop, 2018, pp. 74 - 81.

* L. Li,Z Tang, Y. Shi, and D. Wang, “Gaussian-constrained training for speaker verification,” in ICASSP, 2019.



SITW test

e X-vector: baseline
* VV-vector:VAE-regularized
e C-vector: with cohensive constrained

* A-vector: AE-regularized (VAE without KL constrained to
Gaussian, without hidden sampling)



SITW test

SITW Eval. Core

Cosine | PCA | PLDA | L-PLDA | P-PLDA
X-vector 16.79 17.22 9.16 3.80 4.84
a-vector 16.05 16.81 12.14 4.27 5.09
v-vector 10.11 10.03 3.64 3.64 4.43
c-vector 9.05 8.83 3.77 3.53 4.10

 \V/C vector works even with Cosine, though PCA/a-vector does
not. Means VAE with random sampling really important.

* VV/C vector with cosine get similar performance as PLDA. They
all do normalization!



SITW test

SITW Eval. Core

Cosine | PCA | PLDA | L-PLDA | P-PLDA
X-vector 16.79 17.22 9.16 3.80 4.84
a-vector 16.05 16.81 12.14 4.27 5.09
v-vector 10.11 10.03 3.64 3.64 4.43
c-vector 9.05 8.83 3.77 3.53 4.10

* \V-vector works for PLDA, better than P-PLDA(unsuperivsed),
comparable with L-PLDA(supervised).

* C-vector works mostly better than v-vector; worse when
helping PLDA (PLDA also supervised).

e C-vector plus LDA provides the best performance. Something
complementary.



Normalization test

* \//C AE normalize both
marginal and prior

* Regulization on marginal
can transfer to prior!

* CVAE gives better
marginal, but worse prior
(strange).

e AE reduces Skew but
increases Kurt.

Skew(utt) | Kurt(utt) Skew(spk) | Kurt(spk)
X-vector -0.0423 -0.3604 0.0018 -0.4499
a-vector -0.0072 -0.7740 0.0014 -0.9765
v-vector -0.0055 0.1324 -0.0042 -0.0285
c-vector -0.0043 0.1154 -0.0076 -0.0298




Test on a more realistic data

e Similar trend on
SITW.

* VV/C normalization
is highly effective.

* \//C+PCA+PLDA

performs the best.

Cosine | PCA | PLDA | L-PLDA | P-PLDA
x-vector | 16.65 16.89 | 16.91 [5.39 13.29
v-vector | 13.55 13.71 | 12.46 12.06 12.02
c-vector | 12.98 | 13.13 | 12.48 12.01 11.98




Conclusions for part Il

* VAE can describe complex d/x embeddings.
* VAE-based code is Gaussian-constrained in marginal.
* Cohensive-constrained VAE further constraines conditional.

* The constrained marginal and conditional leads to better regularized
prior.

* The normalized embeddings perform better by themselves or with
PLDA.



Wrap up

* Deep learning can discover fundamental features, either frame-based
or utterance-based.

* Deep features should be accompanies with a careful design to ensure
consistence with the back-end.



* Thanks!



