Language Recognition in ICASSP 2019

Dong Wang

2019/09/09

Language recognition

- ■全世界至少有 7102种语言
- ■近10个语系
- ■母语使用人数 超过5千万的有 23种

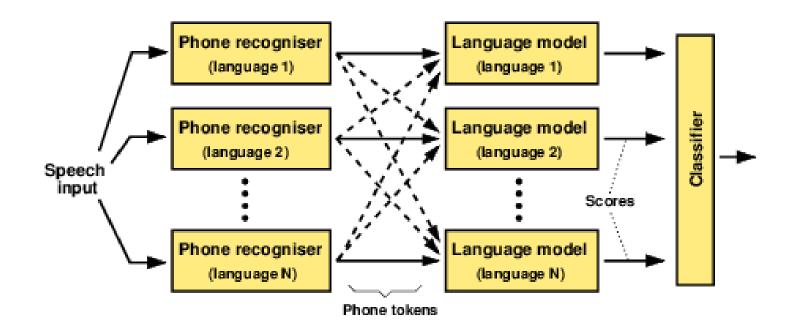
语言识别技术

- ■PPLM/PPRLM
- **■**GMM/ivector
- ■DNN/RNN/PTN/x-vector
- ■Generative model, knowledge enrichement...

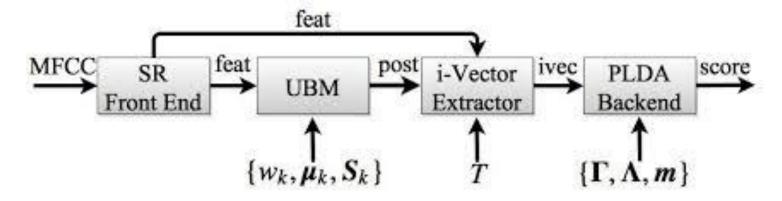
困难与挑战

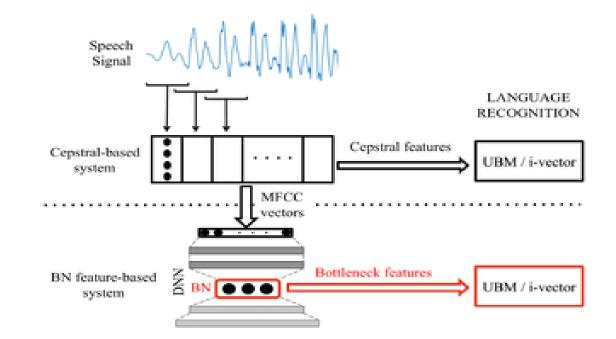
- ■多场景,跨信道
- ■短语音

PPLM/PPRLM

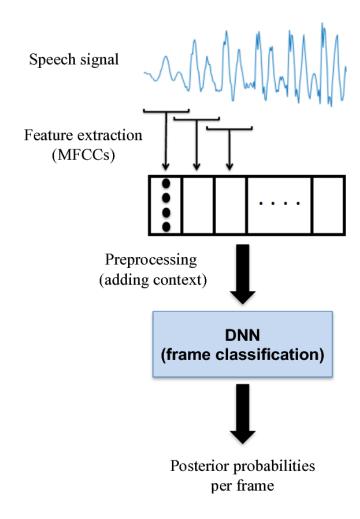


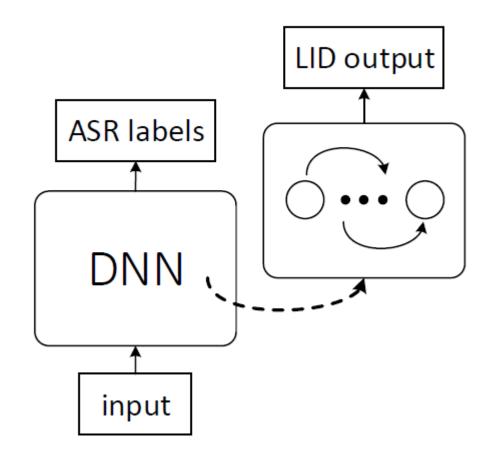
i-vector system



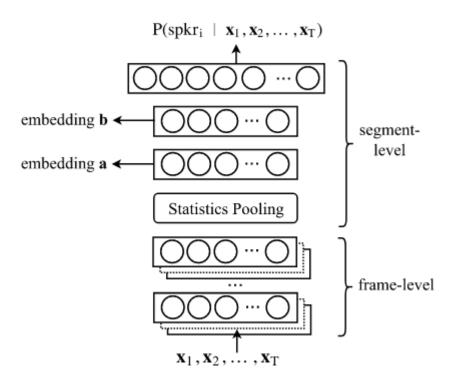


DNN system





Statistical pooling



Attentive statistics

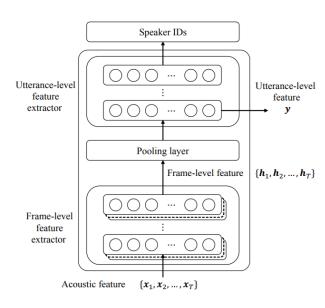


Figure 1: DNNs for extracting utterance-level speaker features

$$e_{t} = \mathbf{v}^{T} f(\mathbf{W} \mathbf{h}_{t} + \mathbf{b}) + k,$$

$$\alpha_{t} = \frac{\exp(e_{t})}{\sum_{\tau}^{T} \exp(e_{\tau})}.$$

$$\tilde{\boldsymbol{\mu}} = \sum_{t}^{T} \alpha_{t} \mathbf{h}_{t}. \qquad \tilde{\boldsymbol{\sigma}} = \sqrt{\sum_{t}^{T} \alpha_{t} \mathbf{h}_{t} \odot \mathbf{h}_{t} - \tilde{\boldsymbol{\mu}} \odot \tilde{\boldsymbol{\mu}}},$$

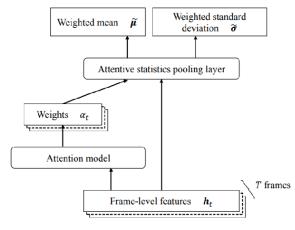


Figure 2: Attentive statistics pooling

Table 1: Performance on NIST SRE 2012 Common Condition 2. **Boldface** denotes the best performance for each column.

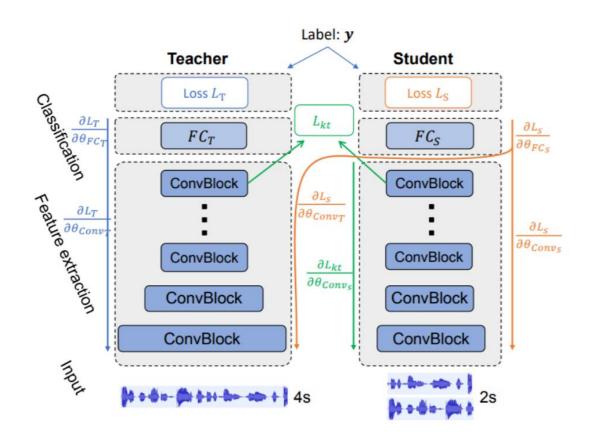
Embedding	DCF10 ⁻²	DCF10 ⁻³	EER (%)
i-vector	0.169	0.291	1.50
average [7, 8] attention [10, 11] statistics [9] attentive statistics	0.290 0.228 0.183 0.170	0.484 0.399 0.331 0.309	2.57 1.99 1.58 1.47

Table 3: Performance on VoxCeleb. Boldface denotes the best performance for each column.

Embedding	DCF10 ⁻²	DCF10 ⁻³	EER (%)
i-vector	0.479	0.595	5.39
average [7, 8]	0.464	0.550 0.598	4.70 4.52
attention [10, 11] statistics [9]	0.443	0.530	4.52
attentive statistics	0.406	0.513	3.85

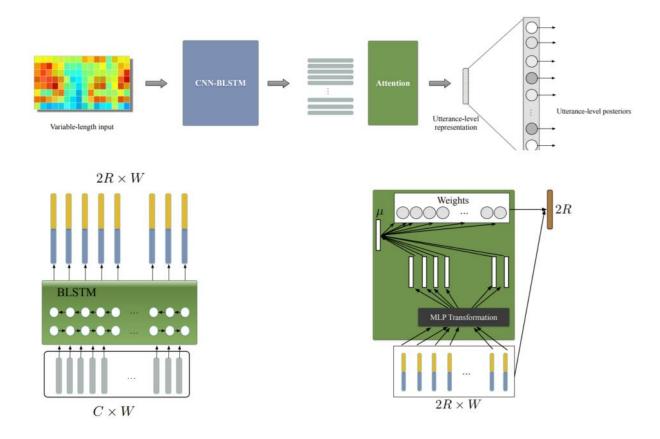
Attentive Statistics Pooling for Deep Speaker Embedding, 2018.

Interactive transfer learning



INTERACTIVE LEARNING OF TEACHER-STUDENT MODEL FOR SHORT UTTERANCE SPOKEN LANGUAGE IDENTIFICATION, ICASSP 2019.

Attention pooling



UTTERANCE-LEVEL END-TO-END LANGUAGE IDENTIFICATION USING ATTENTION-BASED CNN-BLSTM, ICASSP 2019.

Adverserial training

 ∂L_y layer

 M_h

MFCCs for LR

training data

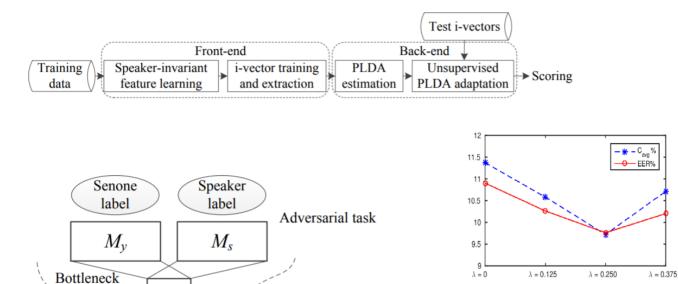


Fig. 3. C_{avg} /EER% results by employing speaker AMTL-DNN BNFs on dev_1s. Back-end is cosine scoring.

Table 4. EER% results with/without unsupervised PLDA adaptation. Back-end is PLDA.

	No Adapt.	Adapt. with cluster number S				SOTA [41]	
		10	50	100	200	500	
Dev_1s Test_1s	7.56	6.84	6.65	6.49	6.99	7.26	N/A
Test_1s	8.78	_	_	7.53	_	-	7.91

ADVERSARIAL MULTI-TASK DEEP FEATURES AND UNSUPERVISED BACK-END ADAPTATION FOR LANGUAGE RECOGNITION, CUHK

Multi-time scale modeling

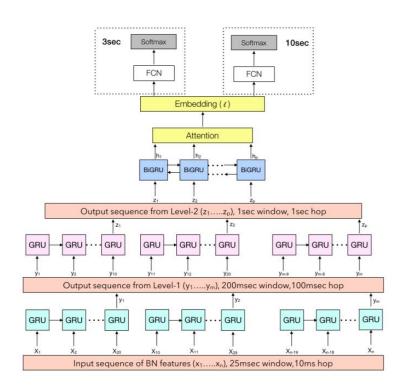


Fig. 1. End-to-end Hierarchical GRU RNN with attention module and duration dependent target layers.

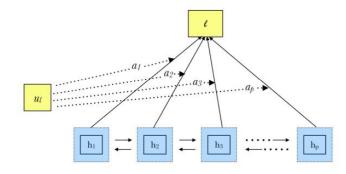


Fig. 2. Attention Mechanism in HGRU.

Table 1. LRE2017 evaluation results on clean evaluation data in terms of accuracy in % (and Cavg in parenthesis) for baseline system [20], LSTM model [16] and the proposed HGRU model.

Dur. (sec)	ivec [20]	LSTM [16]	HGRU
3	53.8 (0.53)	54.7 (0.55)	55.1 (0.55)
10	72.3 (0.27)	72.1 (0.35)	74.1 (0.32)
30	83.0 (0.13)	76.1 (0.28)	83.0 (0.23)
1000	56.2 (0.54)	42.8 (0.79)	53.5 (0.62)
overall	67.9 (0.37)	64.3 (0.48)	68.5 (0.42)

END-TO-END LANGUAGE RECOGNITION USING ATTENTION BASED HIERARCHICAL GATED RECURRENT UNIT MODELS, ICASSP 2019.

Unsuperivsed feature & semi-learned GAN

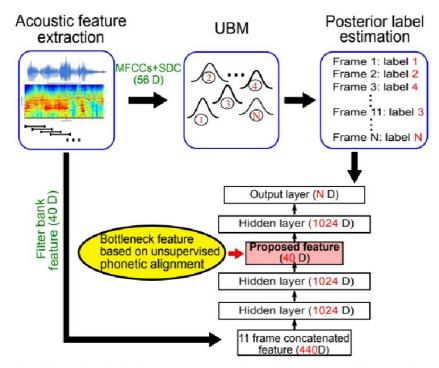


Fig. 1. The UBNF feature extraction diagram. *Sigmoid* non-linearity is used with softmax normalization for the output layer of DNN.

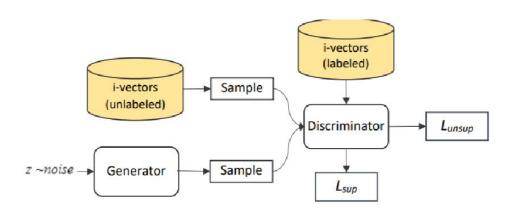


Fig. 2. A conceptual semi-supervised learning framework with GANs. The "feature matching" trick is also employed to construct the generator loss, as proposed in [22].

$$L = -\mathbb{E}_{\mathbf{x}, y \sim p_d(\mathbf{x}, y)}[\log p_m(y|\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim G}[\log p_m(y = K + 1|\mathbf{x})],$$

SEMI-SUPERVISED LEARNING WITH GENERATIVE ADVERSARIAL NETWORKS FOR ARABIC DIALECT IDENTIFICATION, ICASSP 2019.

Highlights

- High-level feature extraction by CNN
- Temporal feature extraction by LSTM
- Attentive statistical pooling
- Adverserial training to purify other factors