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What use can the brain make of the massive flow of sensory informa-
tion that occurs without any associated rewards or punishments? This
question is reviewed in the light of connectionist models of unsuper-
vised learning and some older ideas, namely the cognitive maps and
working models of Tolman and Craik, and the idea that redundancy is im-
portant for understanding perception (Attneave 1954), the physiology
of sensory pathways (Barlow 1959), and pattern recognition (Watanabe
1960). It is argued that (1) The redundancy of sensory messages pro-
vides the knowledge incorporated in the maps or models. (2) Some of
this knowledge can be obtained by observations of mean, variance, and
covariance of sensory messages, and perhaps also by a method called
“minimum entropy coding.” (3) Such knowledge may be incorporated
in a model of “what usually happens” with which incoming messages
are automatically compared, enabling unexpected discrepancies to be
immediately identified. (4) Knowledge of the sort incorporated into
such a filter is a necessary prerequisite of ordinary learning, and a rep-
resentation whose elements are independent makes it possible to form
associations with logical functions of the elements, not just with the
elements themselves.

1 Introduction

Much of the information that pours into our brains throughout the wak-
ing day arrives without any obvious relationship to reinforcement, and
is unaccompanied by any other form of deliberate instruction. What use
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et al. (1962) gives an overview of some of this work; it is interesting to
compare this with the systematic and much more developed treatment
in the book on the subject by Kohonen (1984). One goal has been to
explain topographic projections of sensory pathways and the occurrence
of feature-selective neurons without depending completely on genetic
specification (see especially von der Malsburg 1973; Nass and Cooper
1975; Cooper et al. 1979; Perez et al. 1975; Fukushima 1975, 1980;
Swindale 1980, 1982; Barrow 1987). Another goal has been to explain
the automatic separation and classification of clustered sensory stimuli
(Rosenblatt 1959, 1962; Uttley 1958, 1979). The informon (Uttley 1970), for
example, separated frequently occurring patterns from among a back-
ground of randomly associated elements, and it mimicked many aspects
of the model of Rescorla and Wagner (1972) for conditioning and learn-
ing (Uttley 1975). Grossberg (1980) mainly emphasized the interactions
between supervised and unsupervised learning. The adaptive critic in the
pole-balancing scheme described by Barto et al. (1983) improved learning
performance by observing the pattern of recurring correction-movements
and their outcomes. Self-organization may be mediated by the competi-
tive learning analyzed by Rummelhart and Zipser (1985), which has been
applied to the generation of feature specificity by Barrow (1987) and to a
hippocampal model by Rolls (1989). The hierarchical mapping scheme of
Linsker (1986, 1988) shows spontaneous self-organization, and his info-
max principle develops further some ideas related to those Uttley (1979)
proposed. Linsker’s networks can produce an organization reminiscent
of the cortex both spontaneously, and in response to regularities of the
incoming signals. From an informational viewpoint the recent explo-
ration by Pearlmutter and Hinton (1986) of unsupervised procedures for
discovering regularities in the input is especially relevant.

Much of this paper has antecedents in the above work as well as
in theories about the importance of redundancy in perception (Attneave
1954; Barlow 1959) and pattern recognition (Watanabe 1960, 1985). How-
ever, | have also tried to relate unsupervised learning to ideas about
cognitive processes developed by Tolman (1932) and Craik (1943). Since
these ideas provide a link with traditional psychology they will be briefly
described.

1.1 Cognitive Maps and Working Models. Tolman (1932) worked
within the behaviorists’ tradition, but he disagreed with the rigidity of
their explanations, feeling that these did not adequately convey the rich-
ness of the knowledge about their environment that maze-running rats
clearly possessed and freely utilized. As he said, “behavior reeks of pur-
pose and of cognition,” and the structured knowledge of the environ-
ment that he argued for was subsequently called a cognitive map. Craik
(1943), in his shorter, more philosophically oriented, book proposed that
“thought models, or parallels, reality.” These working models embodied
the essential features and interactions in the world that fed the senses,
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so that the outcomes of various possible actions could be correctly pre-
dicted; this is very similar to the way Tolman thought of cognitive maps
being used by his rats.

What is the source of the extensive and well-organized knowledge
of the environment implied by the possession of a cognitive map or
working model? Though their structure may be genetically determined,
the specific evidence they incorporate can be obtained only from the
sensory messages received by the brain, and it is argued below that
it is the statistical regularities in these messages that must be used for
this purpose. This is an extraordinarily complex and difficult task, for
it requires something like a major program of scientific research to be
conducted at a precognitive level. There is plenty of room for genetic
help in doing this, but once the nature of the task has been defined the
statistical aspects can be approached systematically. In the next sections
this is attempted for the first few steps, and a new method of finding
these regularities — minimum entropy coding — is proposed.

2 Redundancy Provides Knowledge

There are genuine conceptual difficulties in applying information theory
to the nervous system. These start with the paradox that although re-
dundancy is claimed to be terribly important, sensory pathways are said
to eliminate or reduce it rather than preserve it. Some of these difficulties
(such as that one) disappear upon better understanding of information
theory, but others do not: it is, for instance, difficult to apply the con-
cepts when one is uncertain about the information-bearing features of the
messages in nerve fibres, and about the overall plan used to represent
information in the brain. In the next section these difficulties are avoided
by talking about the sensory stimuli applied to the animal rather than
the messages these arouse, and by doing this the definitions can be made
precise.

In principle, the maximum rate of presentation of usable information
to the senses can be specified if one knows the psychophysical facts about
their discriminatory capacities; call this ' bits/sec. Now look at the
actual rate at which information is delivered, and call this H bits/sec;
then the redundancy is simply C' — H bits/sec, or 100 x (C — H)/C%.
There remains a problem about measuring H, for the lower limit to its
value can be calculated only if one knows all there is to know about
the constraints operating in the world that gives rise to our sensations,
and this point can obviously never be reached. Fortunately the concept
of redundancy remains useful even if H is calculated using incomplete
knowledge of the constraints, for this defines an upper limit to H and a
lower limit to the redundancy.

It is confusing to refer to these €' — H bits/sec as information, but
the technically correct term, redundancy, is almost equally misleading,
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for it suggests that this part of the sensory inflow is useless or irrelevant,
whereas it is the potential source of all the available knowledge about
the constant or semiconstant patterns and regularities in an animal’s en-
vironment. Knowledge is perhaps the best term for it, though it may seem
paradoxical that this knowledge of the world around us can be derived
only from the redundancy of the messages. The point can be illustrated
by briefly considering what nonredundant sensory stimuli would be like,

Completely nonredundant stimuli are indistinguishable from random
noise. Thus, such a visual stimulus would look like a television set tuned
between stations, and an auditory stimulus would sound like the hiss
on an unconnected telephone line. Though meaningless to the recipient,
technically such signals convey information at the maximum rate because
they cannot be predicted at all from other parts of the message; Hf = C
and there is no redundancy. Thus, redundancy is the part of our sensory
experience that distinguishes it from noise; the knowledge it gives us
about the patterns and regularities in sensory stimuli must be what drives
unsupervised learning. With this in mind one can begin to classify the
forms the redundancy takes and the methods of handling it.

3 Finding and Using Sensory Redundancy

Some features of sensory stimuli are almost universal. For instance, the
upper part of the visual field is imaged on the lower part of the retina
in an erect animal, and it is almost always more brightly illuminated. In
animals such as cats that have a reflecting tapetum one usually finds that
it is confined to the part receiving the image of the lower, dimmer, part
of the visual field while the reflecting tapetum is replaced by a densely
absorbing pigment in the part receiving the bright image; the result is to
greatly reduce the amount of scattered light obscuring the image in its
dimmer parts.

The many ways that redundant aspects of sensory stimuli are reflected
in permanent features of the sensory system are themselves interesting,
but here we are concerned with learning-like responses. To exploit re-
dundant features the brain must determine characteristics of the stimuli
that behave in a nonrandom manner, so one can consider methodically
the various measures that could be made on the messages in order to
characterize these regularities statistically.

3.1 Mean. One starts with the mean, taken over the recent past. In
vision, this can assume any value from a few thousandths up to many
thousands of cd/m?, but it behaves in a very nonrandom manner because
it tends to stay rather constant for quite long periods. [ have been sitting
at my desk for the past hour, and during this time the mean luminance
has always been close to 10 cd/m?; the constancy of this mean is a highly
nonrandom feature and the visual system takes advantage of it to adjust
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the sensitivity of the pathways to suit the limited range of retinal illu-
minations it will receive. Much is understood about these adaptational
mechanisms, but the principles are well understood by communication
engineers and I shall go ahead to consider more interesting types of re-
dundancy. However the way in which coding by the retina changes with
the mean luminance of the images is a simple paradigm of unsupervised
learning, and the one we are closest to understanding physiologically.

3.2 Variance. The variance of sensory signals probably does not show
the constancy over short periods combined with very large changes over
long periods that is characteristic of the mean, though a walker in mist
or a fish in murky water would certainly be exposed to signals with an
exceptionally low range of image contrasts and hence low variance. Af-
ter the transformations in the retina, taking account of changes in the
variance of the input signals is actually very nearly equivalent to adjust-
ing for the mean values of the signals in the “on” and “off” systems, and
it has been suggested that such contrast gain control occurs in primary
visual cortex (Ohzawa et al. 1982, 1985).

One might perhaps consider next the higher moments of the distri-
butions of input stimuli on the many input channels, but it is hard to
imagine that adapting to these would have any great advantages and I
know of no evidence that natural systems respond in any way to them.
Hence the next step is the large one of considering the patterns of corre-
lation between the inputs on different channels.

3.3 Covariance. The simplest measure of the correlated activity of
sensory pathways would be the covariance between pairs of them. Just
as adaptational mechanisms take advantage of the mean by using it as
an expected value and expressing values relative to it, so one might take
advantage of covariance by devising a code in which the measured cor-
relations are “expected” in the input, but removed from the output by
forming a suitable set of linear combinations of the input signals. It is
possible to form an uncorrelated set of signals in a neural network with
a rather simple scheme of connection and rule of synaptic modification
(Barlow 1989; Barlow and Foldidk 1989; see also Kohonen 1984). The
essential idea is that each neuron’s output feeds back to the other inputs
through anti-Hebbian synapses, so that correlated activity among the out-
puts is discouraged. Such a network would account for many perceptual
phenomena hitherto explained in terms of fatigue of pattern selective el-
ements in sensory pathways, and it also offers a mechanism for some
forms of the “unconscious inference” described by von Helmholtz (1925)
and modern psychologists of perception (Rock 1983). These aspects are
discussed in the references cited above, and here some of the possible
extensions of the principle will be mentioned.
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So far it has been supposed that the covariance is worked out from
paired values occurring at the same moment, but this need not be the
case. Sutton and Barto (1981) have discussed temporal relationships in
conditioning, and there are several synaptic mechanisms that might de-
pend on the correlation between synaptic input at one moment and post-
synaptic depolarization at a later moment; a transmitter might cause
lingering “eligibility” for subsequent reinforcement, or a synaptic re-
warding factor or reverse transmitter released by a depolarized neuron
might be optimally picked up by presynaptic terminals some moments
after they had themselves been active. Decorrelating networks based on
such principles would “expect” events that occurred in often-repeated
sequences, and would tend to respond less strongly to frequently occur-
ring sequences and more strongly to abnormal ones. It is easy to see how
such a mechanism might explain aftereffects of motion.

A consequence of using covariances is that, since the inputs are taken
in pairs, the number of computations increases in proportion to the
square of the number of inputs. This means that it would be impos-
sible to decorrelate the whole sensory input; the best that could be done
would be to decorrelate local sets of sensory fibers. However, the pro-
cess could then be repeated, possibly organizing the decorrelated outputs
of the first stage according to principles other than their topographical
proximity, such as proximity in color space or similarity of direction of
motion (Barlow 1981; Ballard 1984). Such hierarchical decorrelation pro-
cesses may have considerable potential, but there is no denying that the
methods so far considered only begin the task of finding regularities in
the sensory input.

3.4 Rules for Combination or Agglomeration. Decorrelation sepa-
rates variables that are correlated, but if the correlation between two
variables is very strong they might be conveying the same message, and
then one should combine them. For instance, taste information is carried
by a large number of nerve fibers each of which has its characteristic
mixture of sensitivities to the four primary qualities, salt, sweet, sour,
and bitter. We have shown (Barlow and Foldidk 1989) how these can be
decorrelated in groups of four to yield the four primary qualities, but
one might expect all the outputs for one quality then to be combined on
to a much smaller number of elements, for without doing this they just
seem to replicate the information needlessly.

There is need for an operation of this sort in many situations: for
instance, to exploit the fact that there are only two dimensions of color
(in addition to luminance), to exploit the prevalence of edges in ordinary
images, to combine in one entity the host of sensory experiences for which
we use a single word or name, and to do the same for a commonly
repeated phrase or cliché. Pearlmutter and Hinton (1986) consider a
related problem, that of finding input patterns that occur more often than
would be expected if the constituent features occurred independently.
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Finding that some combinations occur more often than expected is the
converse of finding that some combinations do not occur at all, as is
the case when the number of degrees of freedom or dimensions in a set
of messages is less than would appear from the form of the messages.
The set of N features spans less than an N-dimensional space because
certain combinations do not occur, and exploiting this is just the kind of
simplification that would enable one to make useful cognitive maps and
working models. Principle component analysis will do what is required,
and it is believed that the method described in the next section will also,
but it is natural to look for network methods, especially as these have
already achieved some success (for example, Oja 1982; Rumelhart and
Zipser 1985; Pearlmutter and Hinton 1986; Foldidk 1989).

3.5 Minimum Entropy Coding. As with decorrelation the idea is to
find a set of symbols to represent sensory messages such that, in the nor-
mal environment, each symbol is as nearly as possible independent of
the others, but there are two differences: first, it is applicable to discretely
coded, logically distinct variables rather than continuous ones, and sec-
ond it takes into account all possible nonrandom relations between the
outputs, not just the pairwise relationships of the covariance matrix. To
make the principle clear the simple example of coding keyboard char-
acters in 7 binary digits to find alternatives to the familiar 7-bit ASCII
code will be considered. The advantages of examining this are its famil-
iarity, its simplicity, and the fact that samples of normal English text are
readily available from which the nonrandom character frequencies can
be determined.

If a sample of ordinary text is regarded simply as a string of indepen-
dent characters randomly selected from the alphabet with the probabili-
ties given by their frequency of occurrence in ordinary text, the average
entropy of the characters H. is given by the familiar expression:

H.=-) P.logP. (3.1

where P, are the probabilities of the mutually exclusive set of characters.

Each of the characters is represented by a 7-bit word, and the entropies
for each bit can be obtained by measuring their frequencies in a sample
of text. The entropy expression for the bits takes the form:

Hi = —(Pilog P + Qilog Qi) g

where H; is the average entropy of the ith bit, P is its probability, and
Q,‘ is1— JP,'.

An estimate of the average character entropy can be obtained by
adding the 7-bit entropies, but it is important to realize that this can
never be less, and will usually be greater, than the character entropy
given by the original expression (3.1). The reason for this is the lack of
independence between the values of the bits; if it were true for all the 7
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bits that their values were completely independent of the other bits oc-
curring in any combination, then the two estimates would be equal. The
object is to find a code for which this is true, or as nearly true as possible,
and the method of doing this is to find a code that minimizes the sum
of the bit entropies — hence the name. If the minimum is reached and
the bits are truly independent we call it a factorial code, since each bit
probability or its complement is then a factor of the probability of each
of the input states.

The maneuver can be looked at another way. The seven binary digits
of the ASCII code can carry a maximum of 7 bits, but actually carry less
when used to transmit normal text, for two reasons. First, the bit prob-
abilities are a long way from 1/2, which would yield the maximum bit
entropy; this form of redundancy is explicit and causes no trouble, for the
probability of each of the 7 bits is available wherever they are transmitted
and easily measured. Second, there are complicated interdependencies
among the bits, so the conditional bit probabilities are not the same as the
unconditional ones; this form of redundancy is troublesome, for it is not
available wherever the bits are transmitted and to describe it completely
one needs to know the conditional probabilities of each bit for all com-
binations of other bits. If both of these forms of redundancy were taken
into account the information conveyed per ASCII word would of course
be the same as /. of expression (1), i.e., about 4.3 bits, and no change of
the code would alter this. However, changing the code does change the
relative amounts of the two forms of redundancy, and by finding one that
minimizes the sum of the bit entropies one maximizes the redundancy
that results from bit probabilities deviating from 1/2. This leaves less
room for redundancy from interdependencies between the bits; the trou-
blesome form of redundancy is squeezed out by maximizing the other
less troublesome form.

The minimum entropy principle should be generally applicable and
clearly goes further than decorrelation, which considers only the outputs
in pairs. It can also be used to compare and select from codes that change
the number of channels or dimensionality of the messages. The entropy is
a locally computable quantity, and by minimizing it one can increase the
independence of the outputs without actually measuring the frequencies
of all the possible output states, which would often be an impossible
task. An accompanying article (Barlow et al. 1989) goes into some of the
practical and theoretical problems in finding minimum entropy codes.

In this section it has been suggested that the statistical regularities of
the incoming sensory messages might be measured and used to change
the way they are coded or represented. It is easy to see that this would
have advantages, analogous to those conferred by automatic gain con-
trol, in ensuring a compact representation within the dynamic range of
the representative elements, but there may be more profound benefits at-
tached to a representation in which the variables are independent in the
environment to which the representation has been adapted. To under-
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stand these one must consider the main task for which our perceptions
are used, namely the detection of new associations and their utilization
in ordinary learning and conditioning,.

4 Ordinary Learning Requires Previous Knowledge

Over the past 20 years the work of Kamin (1969), Rescorla and Wagner
(1972), Mackintosh (1974, 1983), Dickinson (1980), and others has brought
about a very big change in the way theorists approach the learning prob-
lem. Whereas previously they tended to think in terms of mechanistic
links whose strengths were increased or decreased according to defin-
able laws, attention has now shifted to the computational problem that
an animal solves when it learns. This started with the realization and
experimental demonstration of the fact that the detection of new associa-
tions is strongly dependent on other previously and concurrently learned
associations, many of which may be “silent” in that they do not them-
selves produce overt and obvious effects on outward behavior. As a
result of this change it is at last appreciated that the brain studied in
the learning laboratory is doing a profoundly difficult job: it is deducing
causal links from which it can benefit in the world around it, and it does
this by detecting suspicious coincidences; that is, it picks up associations
that are surprising, new, or different among those that the experimenter
offers it.

To detect new associations one must detect changes in the probabil-
ities of certain events, and once this is realized an important role for
unreinforced experience becomes clear: it is to find out and record the
a priori probabilities, that is, the normal state of affairs, or what usually
happens. Though this elementary fact does not seem to have been much
emphasized by learning theorists it is obviously crucial, for how can
something be recognized as new and surprising if there is no preexisting
knowledge about what is old and expected?

4.1 Detecting New Associations. The basic step in learning is to de-
tect that event C predicts U; C might be the conditional, U the uncondi-
tional stimulus of Pavlovian conditioning, or C might be a motor action
and U a reinforcement in operant conditioning, or they might be suc-
cessive elements in a learned sequence. Unsupervised learning can help
with at least two aspects of this process: first, the separate representa-
tion of a wide range of alternative Cs, and second, the acquisition of
knowledge of the normal probabilities of occurrence of these possible
conditional stimuli.

It is often tacitly assumed that all alternative conditioning stimuli
can be separated by the brain and their occurrences independently regis-
tered in some way, but one should not blandly ignore the whole problem
of pattern recognition, and the massive interconnections we know exist
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between the neurons of the brain means that the host of alternative Cs are
unlikely to be completely separable unless there are specific mechanisms
for ensuring that they are. The tacit assumption that the probabilities of
occurrence of these stimuli, or of their cooccurrence with U, are known
is equally unjustified, though it is evident that if they were not there
would be no sound basis for judging that a particular C had become
a good predictor of U. The logical steps necessary to detect an associ-
ation between C and U will be considered in more detail to show the
importance both of knowledge of their normal probabilities and of the
separability of alternative conditional stimuli.

The only way to establish that C usefully predicts U is to disprove the
null hypothesis that the number of occasions U follows C is no more than
would be expected from chance coincidences of the two events; it is easy
to see that if this null hypothesis is correct, no benefit can possibly result
from using C as a predictor of U. To know the expected rate of chance
coincidences one must either have measured the normal rate of the com-
pound event (U following C) directly, or have knowledge of the normal
probabilities of occurrence, P(C) and P(U); further if these probabilities
are to be used it must be reasonable to assume they are independent.
This prior knowledge is clearly necessary before new predictive associa-
tions can be detected reliably. Now consider the difficulties that arise if
a particular C cannot be fully resolved or separated from the alternative
Cs.

Failure of resolution or separation means that the registration of the
occurrence of an event is contaminated by occurrences of other events.
Estimates of the probabilities of occurrence of C both with and without
U would be misleading if based on these contaminated counts, and their
use would cause failures to detect associations that were present and
the detection of spurious associations that did not exist. Thus, if counts
of alternative events like C are to be used to detect causal factors, they
must be adequately resolved or separated if learning is to be efficient and
reliable.

4.2 Independence Is Needed for Versatile Learning. Now recon-
sider the two ways, measurement and calculation, of estimating the com-
pound event probability P(U following C). Directly measuring it is ade-
quate and plausible when one has prior expectations about the possible
conditional stimuli C, especially as in either scheme one must somehow
be able to detect the occurrence of this sequence when it occurs. But
calculating P(U following C) from P(C) and P(U) is much more versatile,
for the following reason. Measuring the rates of N coincidences such as
“U following C” just gives these rates and no more, whereas knowledge
of the probabilities of N independent events enables one to calculate
the probability of all possible logical functions of those events, at least
in principle. This gigantic increase in the number of null hypotheses
whose predictions can be specified and tested gives an enormous advan-
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tage to the method of calculating, rather than measuring, the expected
coincidence rates. However, calculating P(U following C) from the prob-
abilities of its constituents depends on the formation of a representation
in which the constituent events can be relied on to be independent until
the association that is to be detected occurs.

To summarize: to detect a suspicious coincidence that signals a new
causal factor in the environment one should have access to prior knowl-
edge of the probabilities of simpler constituent events, and these sim-
pler events should be separately registered and independent on the null
hypothesis from which one wishes to advance. It is obviously an enor-
mously difficult and complicated task to generate such a representation,
and the types of coding discussed above are only first steps; however,
the versatility of subsequent learning must depend critically on how well
the task has been done.

4.3 Some Other Issues. The approach taken here might be criticized
on the grounds that the problem facing the brain in learning is consid-
ered in too abstract a manner, the actual mechanisms being ignored. For
example, the logic of the situation requires that the numbers of occur-
rences and joint occurrences be somehow stored, and one might point to
this as the major problem, rather than the way the numbers are used. It
certainly is a major problem, but the attitude adopted here is that one is
not going to get far in understanding learning without recognizing the
logic of inductive inference, since this dictates what quantities actually
need to be stored; it seems obvious that this problem should be looked
at first.

There must be many ways in which the brain fails to perform the
idealized operations required to detect new causal factors. It performs
approximations and estimates, not exact calculations, but one cannot ap-
preciate the mistakes an approximation will lead to without knowing
what the exact calculation is. It is likely that many of the features of
learning stem from the nature of the problem being tackled, not from the
specific details of the mechanisms, and it is foolish to confuse the one
with the other through failing to attend to the complexity of the task the
brain appears to perform so effectively.

There is another somewhat irrelevant issue. If it was known with
certainty that a predictive relation between C and U existed it would
still have to be decided whether it should be acted on. This theoretically
depends on whether P(U following C) is high enough for the reward
obtained when U does follow C to outweigh the penalty attached to the
behavior needed to reap the reward when U fails to materialize; that is
a different matter from deciding whether the relation exists, and for the
present it can be ignored.
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4.4 Storing and Accessing the Model. So far no means has been pro-
posed for performing the computations suggested above, nor for storing
and accessing the knowledge of the environment that the model con-
tains. One possibility is to form a massive memory for the usual rates
of occurrence of various combinations of sensory inputs. Something like
this may underlie our ability to say “the almond is blossoming unusually
early this year” and to make similar cognitive judgments, but the com-
parative judgments of everyday perception are certainly made in quite a
different way. When we see white walls in a dimly lit room we do not
observe their luminance, then refer to a memorized look-up table that
tells us what luminances are to be called white when the mean lumi-
nance is such and such; instead we have mechanisms (admittedly not
yet fully understood) that automatically compare the signals generated
by the image of the wall with signals from other regions, and then attach
the label “white” wherever this comparison yields a high value.

This automatic comparison was regarded above as a way of eliminat-
ing the redundancy involved in signaling the mean luminance on every
channel, and it should now be clear how the various other suggested
forms of recoding do much the same operation for other “expected” sta-
tistical regularities in the sensory messages. One can regard the model or
map as something automatically held up for comparison with the current
input; it is like a negative filter through which incoming messages are au-
tomatically passed, so that what emerges is the difference between what
is actually happening and what one would expect to happen, based on
past experience. In this way past experience can be made continuously
and automatically available.

5 Discussion

Since the early days of information theory it has been suggested that
the redundancy of sensory stimuli is particularly important for under-
standing perception. Attneave (1954) was the first to point this out, and
I have periodically argued for its importance in understanding both the
physiological mechanisms of sensory coding, and higher level functions
including intelligence (Barlow 1959, 1961, 1987). One can actually trace
the line of thought back to von Helmholtz (1877, 1925), and particularly
to the writings of Ernst Mach (1886) and Karl Pearson (1892) about “The
Economy of Thought.” To what extent is this line of thought the same
as that of Tolman and Craik on cognitive maps and working models?
They are certainly closely related, for they both say that the regu-
larities in the sensory messages must be recorded by the brain for it
to know what usually happens. However, redundancy reduction is the
more specific form of the hypothesis, for | think it also implies that the
knowledge contained in the map or model is stored in such a form that
the current sensory scene is automatically compared with it and the dis-
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crepancies passed on for further consideration — the idea of the model
as a negative filter.

There is perhaps something contradictory and intuitively hard to ac-
cept in this notion, especially when applied to the cognitive knowledge
of our environments to which we have conscious access. When we be-
come aware that the almond is blossoming unusually early, we think
this is an absolute judgment based on comparisons with past, positive
experiences, and not the result of a discrepancy between present expe-
rience and unconscious rememberings of past blossomings. Perhaps the
negative filter idea applies only to the unconscious knowledge that our
perceptions use so effectively, with quite different mechanisms employed
at the higher levels to which we have conscious access. On the other hand
redundancy reduction may be the deeper view of how our brains handle
sensory input, for it may describe the goal of the whole process, dictating
the form of representation as well as what is represented; we should not
be too surprised if our introspections turn out to be misleading on such
a matter, for they may be concerned with guiding us how to tell others
about our experiences, not with informing us how the brain goes about
its business.

The discussion should have demonstrated that there is a close rela-
tionship between the properties of the elements that represent the current
scene, the model that tells one “what usually happens,” and the ease with
which new associations can be detected and learned. But the recoding
methods suggested above are unlikely to be complete, and it is worth
listing other factors that must be important in determining the utility of
representations.

5.1 Other Factors Affecting the Utility of Representations.

1. The best method of detecting a target in a noisy background is to
derive a signal that picks up all the energy available from the signal
with the minimum contamination by energy from its background —
the principle of the matched detector. This principle must be very
important when detecting events in the environment that are asso-
ciated with rewards or punishments, but there is no guarantee that
the code elements of a minimum entropy code (or any other code
that is unguided by reinforcement) will be well matched to these
classes of events. Though a priori probabilities can be calculated
for any logical function of the inputs if the representative elements
are independent, this calculation is not necessarily as accurate as
that obtained from a matched filter.

2. It is also important that a coding scheme should lead to appropriate
generalization. Probably representative elements should start by
responding to a wider class of events than that to which, under
the influence of “shaping,” they ultimately respond. To meet this
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requirement mechanisms additional to minimum entropy coding
are required.

3. Items such as the markings of prey, predators, or mates may have a
biological significance that is arbitrary from an informational view-
point.

4. Sensory scenes and stimuli that have been reinforced obviously
have special importance, and they should therefore have a key role
in classifying sensory stimuli.

It is clear that the minimum entropy principle is not the only one
on which the representation of sensory information should be based.
Nonetheless a code selected on this principle stores a wealth of knowl-
edge about the statistical structure of the normal environment, and the
independence of the representative elements gives such a representation
enormous versatility. It is relatively easy to devise learning schemes ca-
pable of detecting specific associations, but higher mammals appear to
be able to make associations with entities of the order of complexity that
we would use a word to describe. As George Boole (1854) pointed out,
words are to the elements of our sensations like logical functions to the
variables that compose them. We cannot of course suppose that an animal
can form an association with any arbitrary logical function of its sensory
messages, but they have capacities that tend in that direction, and it is
these capacities that the kind of representative schemes considered here
might be able to mimic.
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