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ABSTRACT

The transformer architecture has shown great capability
in learning long-term dependency and works well in multiple
domains. However, transformer has been less considered in
audio-visual speech enhancement (AVSE) research, partly
due to the convention that treats speech enhancement as a
short-time signal processing task. In this paper, we chal-
lenge this common belief and show that an audio-visual
transformer can significantly improve AVSE performance,
by learning the long-term dependency of both intra-modality
and inter-modality. We test this new transformer-based AVSE
model on the GRID and AVSpeech datasets, and show that it
beats several state-of-the-art models by a large margin.

Index Terms— Transformer, Audio-Visual Speech En-
hancement, Attention Mechanism

1. INTRODUCTION

Audio visual speech enhancement (AVSE) is inspired by
speech perception studies [1, 2, 3, 4]. These studies showed
that with assistance from facial information, humans could
do significantly better on auditory perception tasks than if
only audio signals were available. Most of the modern AVSE
approaches are based on deep neural networks (DNNs) due
to their great potential in integrating multiple information
sources, thereby simulating the multi-modality processing
capability of humans.

Almost all existing DNN-based AVSE models assume a
local correspondence (alignment) between the audio and vi-
sual streams. For example, Gabbay et al. [5] proposed an
encoder-decoder architecture where 200 ms of audio signal
and the corresponding visual signal are mapped to a shared
embedding space through different encoders and the decoder
generates clean speech based on the concatenated embedding
of the two streams. Hou et.al [6] built a similar model that
maps the audio and video features through CNNs, however
the decoder reconstructs not only the clean speech but also
the mouth images. Ephrat et.al [7] introduced a Looking-to-
Listen model, which produces embeddings of audio and vi-
sual signals and concatenates them to feed into a bidirectional
LSTM to predict complex masks that derive clean speech.
Gogate [8] followed the same idea and presented an architec-
ture called CochleaNet. Wang et.al [9] introduced an online
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visual speech enhancement architecture that has a loose cou-
pling connection between the audio and visual components
and uses a stacked unidirectional LSTM to predict the ideal
ratio masks(IRMs) that is applied to noisy speech to derive
clean speech.

In all of the above AVSE models, the enhancement is
based on local information from both audio and visual
streams, and long-term information, e.g., linguistic knowl-
edge or prosody patterns, is simply ignored. This is certainly
not ideal and is not the way that humans do. From daily
experience, it is clear that we heavily rely on long-term in-
formation in perception tasks. More concrete evidence is
from controlled perceptual studies. For example, Kalikow
et al. [10] showed that words in a syntactic and semantic
constrained context can be more easily identified by humans
than in an unconstrained context. The same conclusion was
found by Boothroyd et al. [11], where a mathematical relation
was discovered between the recognition performance in con-
strained and unconstrained contexts. Minematsu et al. [12]
found that people use prosody features to perceive spoken
words.

The importance of long-term information has been no-
ticed by researchers in the field of audio-only speech en-
hancement. Early research employs recurrent neural net-
works(RNN [13]) to capture this information [14]. Recently,
transformer [15] was proposed to increase the perceptual
field [16, 17]. Compared to RNN, the transformer model em-
ploys a self-attention mechanism to select the most important
context in parallel, therefore avoiding the limited remem-
brance problem suffered by autoregressive models such as
RNN.

In this paper, we employ the transformer technique to
audio-visual speech enhancement. Our argument is that in the
audio-visual condition, long-term dependence is more impor-
tant than in the audio-only condition. One reason is that the
audio and visual modalities are naturally asynchronous. For
example, Schwartz et al. [18] showed clear asynchrony be-
tween audio and visual frames, varying between 20ms audio
lead to 70ms audio lag. This means that we have to look into
a broader context in order to integrate the corresponding vi-
sual knowledge. Moreover, as has been shown in the previous
study [9], local visual information is often weak and ambigu-
ous, and one needs a sequence of visual frames to infer the
pronunciation action. Following this motivation, we present
a Visual Speech Enhancement Transformer(VSET) model to
exploit the long-term information from both audio and vi-



sual signals. The model involves three components: an audio
transformer and a visual transformer that capture long-term
information from the audio and visual modalities respectively,
and a multimodal transformer based on a multi-head attention
that selects the desired information from the output of the au-
dio and visual transformers.

We evaluate our VSET model on the Grid dataset and the
AVSpeech dataset in terms of PESQ score. Based on our stud-
ies, we show that our model outperforms several state-of-the-
art models, particularly in conditions with unknown noise and
unknown speakers.

2. MODEL ARCHITECTURE

The proposed VSET architecture is shown in Fig. 1. We will
introduce the Transformer model we used in the audio and
visual encoders, and then present more details of the compo-
nents in the architecture.

Fig. 1: Architecture of the VSET model.

2.1. Transformer Block

We follow the NEZHA structure [19] to build our audio and
visual transformers. The structure is shown in Fig. 2. For the
k-th transformer, the i-th self-attention head is formulated as
follows:

Qi = Queryi(Ok−1)

Ki = Keyi(Ok−1) +P

Vi = V aluei(Ok−1) +P

Si = softmax(
QiKi√

d
)

Yi = ViS
T
i

where Ok−1 is the output from the previous transfromer,
Queryi, Keyi, and V aluei are three linear transforms to
extract the queries, keys and values for the input features, P
is the matrix derived by positional encoding [15], and Yi is
the output of the i-th self-attention head. S is the annotation

Fig. 2: Architecture of the audio and visual transformers.

matrix, for which the element s(i, j) denotes the annota-
tion weight on the j-th feature when processing at position
i. Note that d is the dimension of the input feature. The
output of the self-attention layer will be fed to the Feed For-
ward Network(FNN) layers to produce the output of the k-th
transformer, formulated by:

Ok = FFN(f(Y1,Y2, ...)).

Note that for the first transformer, the input Ok−1 is just the
input features X = [x1, ...,xT ].

2.2. Audio-based component

The audio-based component contains a fully-connected(FC)
layer and a stack of 6 transformers proposed in the previous
section. The input to the FC layer is a sequence of log power
spectrum (LPS) features of the noisy speech. The feature di-
mension is 257, and the output dimension of the FC layer is
768.

2.3. Visual-based component

Table 1: Architecture of the visual feature extractor.

Layer #Filters Kernel size Stride
SeparableConv1 64 3x3 2x2
SeparableConv2 64 3x3 2x2
SeparableConv3 128 3x3 2x2
SeparableConv4 128 3x3 2x2
SeparableConv5 256 3x3 2x2
SeparableConv6 256 3x3 2x2

FC-768

The visual-based component contains a visual feature ex-
tractor and a stack of 6 transformers presented in Section 2.1.



The feature extractor is based on a separable convolution neu-
ral network [20] shown in Table 1. The input is a sequence of
images that contain the mouth region of the speaker present
in the audio input, and output feature is of 768 dimensions.

2.4. Audio-Visual fusion component

The audio-visual fusion part of the VSET model is based on
the multi-modal Transformer block, as shown in Fig. 1. The
main part of the transformer is a multi-modal multi-head at-
tention (MMA) layer, which fuses the output features from
the audio-based component (A) and the visual-based com-
ponent (V). Denoting the position matrices derived for the
audio and visual streams by Pa and Pv respectively, for the
k-th transformer, the MMA block is formulated as follows:

Qi = Query(Ok−1)

Ka,i = Keya,i(A) +Pa Va,i = V aluea,i(A) +Pa

Sa,i = softmax(
QiKa,i√

d
) Ya,i = Va,iS

T
a,i

Kv,i = Keyv,i(V) +Pv Vv,i = V aluev,i(V) +Pv

Sv,i = softmax(
QiKv,i√

d
) Yv,i = Vv,iS

T
v,i

The output of the MMA layer is fed to the rest of the layers
and produce the output of the k-th transformer:

Ok = FFN(f(Ya,1,Yv,1, Ya,2, Yv,2, ...)).

There are 6 multi-modal transformer blocks in total. For the
first block, the query is based on the noisy input speech LPS
features.

Note that the visual positional encoding should consider
the different frame rates of the audio and visual streams.
Specifically:

PV (a, v, k) = g((a− v ∗ r)/(10000
2bk/2c

d ))

where k indexes the dimension of the embedding di, and r
refers to the ratio of audio frame rate to visual frame rate.
Function g corresponds to sin or cos when the dimension is
even or odd respectively. We show that with the multimodal
positional encoding the VSET learns better alignment for the
visual signals.

2.5. Decoding component

The decoding component is an FC layer that predicts the IRM
which is computed as the ratio of Power Spectra(PS) of the
clean and noisy speech in each TF-bin.

IRM =
PSclean

PSclean + PSnoise

Once the IRM is predicted, it can be multiplied with the
noisy power spectrum to produce the clean spectrogram. Fur-
thermore, reusing the phase of the noisy speech, we can re-
cover the waveform of the clean speech.

3. EXPERIMENTS

3.1. Datasets

• GRID: The Grid Audio-Visual Corpus[21] consists of
32 speakers each speaking 1000 English sentences. We
divide the data following [9]. The training set consists
of 900 utterances from 30 speakers. There are two test
sets: Test(S) set consists of 100 utterances from the
same 30 speakers present in the Training set; Test(U)
set consists of the complete utterances from the remain-
ing 2 speakers. The Test(S) data can be used to test per-
formance on in-domain speakers while the Test(U) can
be used to test out-of-domain speakers.

• AVSpeech: The AVSpeech[7] dataset contains over
4700 hours of audio-visual data comprising over 150k
unique speakers. We take the top 2000 speakers that
have the largest amount of speaking data as our train-
ing set. The following 300 speakers in the same order
comprises our testing set. The testing set consists of
out-of-domain speakers.

• Chime and Human Noise: We use 80% of the data
from the Chime noise to perturb the training data. The
remaining is used to perturb the testing data. The entire
Human noise collection is used to perturb the testing
data. The Chime noise can be considered as in-domain
noise while the Human noise is out-of-domain noise.

3.2. Methodology

The audio is sampled at 16kHZ and the spectrogram is ex-
tracted using STFT with parameters as follows: window size
of 400, hop size of 160 and FFT length of 512. The audio
data for training is prepared by mixing noises of SNRs [-5, 0,
5] into the clean speech. We test the model by mixing noises
in the range of SNRs [-5, 0, 5, 10, 15, 20]. The mixing of
clean and noise data is done in the time-domain with the noise
clipped to the same length as clean speech. The LPS feature
is used as input to the audio component after normalization
using the speech present in the training set.

The mouth boundaries are detected using MTCNN[22]
and an image of size 160x160 is extracted that contains the
mouth at the center. The image is used as input to the video
component after normalization.

We train the model using a learning rate scheduler - we
warmup to 1e-4 over 1 epoch, keep the learning rate steady
for 1 epoch and then decay to 1e-7 over 18 epochs.

3.3. Results on Grid Dataset

We compare our model (VSET) with the Looking to Listen
(L2L) [7], Visual Speech Enhancement (VSE) [5], Online Vi-
sual Speech Enhancement (OVSE) [9] and the Audio-Only
(AO) model from [9]. From Table 2, we can conclude that
VSET outperforms all of the models on almost all SNR con-
ditions when tested on the in-domain Chime noise that the
models are trained with. When we view the results on Table



Table 2: Results for the models trained on GRID dataset

GRID Training

SNR Chime(S) Chime(U) Human(S) Human(U)
AO VSE L2L OVSE VSET AO VSE L2L OVSE VSET AO VSE L2L OVSE VSET AO VSE L2L OVSE VSET

-5 2.25 2.43 2.36 2.20 2.35 2.05 2.05 2.03 1.98 2.06 1.89 2.28 2.10 1.89 2.14 1.85 2.03 1.96 1.84 2.02
0 2.84 2.81 2.81 2.81 2.88 2.65 2.54 2.59 2.59 2.68 2.38 2.69 2.55 2.36 2.60 2.34 2.48 2.46 2.34 2.51
5 3.17 3.03 3.08 3.16 3.19 3.06 2.82 2.92 2.99 3.08 2.76 2.96 2.87 2.75 2.94 2.76 2.78 2.81 2.74 2.88
10 3.41 3.19 3.27 3.39 3.42 3.34 3.01 3.16 3.29 3.37 3.07 3.15 3.13 3.06 3.21 3.09 2.99 3.07 3.08 3.18
15 3.58 3.30 3.43 3.56 3.61 3.56 3.14 3.36 3.52 3.60 3.33 3.29 3.33 3.31 3.44 3.35 3.14 3.29 3.35 3.43
20 3.71 3.40 3.55 3.70 3.77 3.71 3.24 3.51 3.69 3.78 3.53 3.39 3.49 3.52 3.63 3.57 3.25 3.45 3.57 3.64

AVG 3.16 3.03 3.08 3.14 3.20 3.06 2.80 2.93 3.01 3.10 2.83 2.96 2.91 2.82 3.00 2.82 2.78 2.84 2.82 2.94

Table 3: Results for the models trained on AVSpeech dataset

AVSpeech Training

SNR AVSpeech Test Chime Grid Chime Unseen
AO VSE L2L VSET AO VSE L2L VSET

-5 2.20 2.18 1.97 2.33 2.05 2.27 1.75 2.19
0 2.57 2.51 2.25 2.69 2.52 2.63 2.11 2.67
5 2.92 2.80 2.56 3.03 2.83 2.87 2.45 2.99

10 3.25 3.05 2.89 3.34 3.08 3.05 2.76 3.25
15 3.54 3.25 3.23 3.61 3.32 3.20 3.05 3.49
20 3.79 3.41 3.54 3.84 3.55 3.33 3.33 3.71

AVG 3.04 2.87 2.74 3.14 2.89 2.89 2.58 3.05

2 for the Human noise (which was not a part of the training
data) perturbed Test sets, VSET falls below the VSE model
on the lower SNRs. We hypothesize that this is due to the
over-reliance of the VSE model on the visual modality - in-
put images do not change when we introduce a different noise
into the test set - thereby making a visual-trusting model like
VSE more effective. However, over-reliance on visual data
may lead to a disadvantage when the visual information is
relatively weak. This hypothesis can be further corroborated
by the observation that under higher SNR conditions, the VSE
model falls below the AO model, as the visual modality is un-
able to provide sufficient information to compete with a rela-
tively clean audio. Furthermore, under no condition does the
VSET model falls below the AO model showing the robust-
ness of our approach in introducing the visual modality to the
speech enhancement task.

3.4. Results on AVSpeech

The results on this large dataset setting also demonstrate
that our VSET model can add visual information effectively
on top of the AO model thereby leading to a robust visual-
boosted speech enhancement network whereas the L2L and
VSE models perform below the AO model in most of the sce-
narios. Comparison between Table 2(Chime(U)) and Table 3
shows an increasing gap between VSET and L2L when there
are more training data, indicating that the L2L model cannot
utilize large datasets as well as the VSE model.

3.5. Case Study

We investigate how the multi-head attention fuses the audio
and visual information. The attention heat maps with two po-
sitional encoding schemes are shown in Fig. 3: the vanilla
schemes from [19] and the multi-modality scheme that ac-
counts for the frame rate mismatch between audio and visual
modalities. It clearly shows that the multi-modality scheme
can obtain a reasonable fusion plan by discovering the correct
audio-visual correspondence, while the vanilla scheme can-
not.

(a) (b)

Fig. 3: Attention heat maps with (a) the vanilla positional
encoding scheme [19] and (b) the multi-modality positional
encoding scheme.

4. CONCLUSION

We presented a visual speech transformer architecture for
audio-visual speech enhancement. This architecture is able to
integrate knowledge of long-term spans from both the audio
and visual streams, and perform effective multi-modality in-
formation fusion. We test this model on Grid and AVSpeech
datasets. The results show that the new model outperforms
several stat-of-the-art models by a large margin. For future
work, we aim to integrate the local information along with the
global information through transformers. Along with that we
will explore multi-modal transformers in AV domains other
than AVSE.
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