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ABSTRACT
Deep neural networks (DNN) have gained remarkable

success in speech recognition, partially attributed to its flex-
ibility in learning complex patterns of speech signals. This
flexibility, however, may lead to serious over-fitting and hence
miserable performance degradation in adverse environments
such as those with high ambient noises. We propose a noisy
training approach to tackle this problem: by injecting noises
into the training speech intentionally and randomly, more
generalizable DNN models can be learned. This ‘noise injec-
tion’ technique has been well-known to the neural computa-
tion community, however there is little knowledge if it would
work for the DNN model which involves a highly complex
objective function. The experiments presented in this paper
confirm that the original assumptions of the noise injection
approach largely holds when learning deep structures, and the
noisy training may provide substantial performance improve-
ment for DNN-based speech recognition.

Index Terms— deep neural network, noise injection, ro-
bust speech recognition

1. INTRODUCTION

Deep neural networks (DNN) gained much attention recently
in automatic speech recognition (ASR). Numerous experi-
ments demonstrated that DNN-based systems can achieve
much higher recognition accuracy than conventional systems
that are based on the Gaussian mixture model (GMM) [1, 2].
Part of the DNN success can be attributed to the large pa-
rameter space which provides great flexibility for DNN to
learn complex speech patterns from large amounts of data.
This flexibility, however, may cause serious over-fitting prob-
lems, hence leading to miserable performance reduction in
adverse environments such as those with noises. This prob-
lem is more evident when the training data is limited and/or
channel mismatch between training and testing exists. For
example, when the training data is mostly clean and the test
data is corrupted by noises, ASR performance usually suffers
a substantial reduction [3].

A multitude of research has been conducted to improve
noise robustness for DNNs. Multi-condition training was pre-
sented in [4], where DNNs were trained by involving speech
data in various channel/noise conditions. This approach
is straightforward and usually delivers good performance,
though collecting multi-condition data is not always possible.
Another direction is to use noise-robust features, e.g., audi-
tory feature based on Gammatone filters [3]. Various feature
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compensation approaches were also studied. [5] proposed
to compensate input features using the vector Taylor series
(VTS) in an adaptive training framework. The authors of [6]
investigated several popular speech enhancement approaches
and found that the maximum likelihood spectral amplitude
estimator (MLSA) is the best spectral restoration method for
DNNs trained with clean speech and tested on noisy data.
Some other research involves noise information in the input
of the DNN structure and then train ‘noise aware’ networks.
For instance, [7] uses the VTS as a noise estimator to generate
noise-dependent inputs for DNNs.

Another promising technique for noise robustness is the
denoising auto-encoder (DAE) [8]. The DAE learns a denois-
ing function using an auto-encoder structure which artificially
injects noises to the input and reconstructs the original in-
put on the output. Note this approach is not particular for
DNNs but a general denoising technique; interestingly, the
DAE structure is usually a DNN itself. [9] extended the DAE
by introducing recurrent structures and demonstrated that the
deep and recurrent auto-encoder provides better performance
for ASR in most cases of noises.

In this paper, we propose a noisy training approach for
DNNs. The idea is simple: by randomly selecting some
noises to corrupt the input speech when conducting DNN
training, the noise patterns can be learned, and generaliza-
tion capability of the resulting network is expected to be
improved. Both may improve robustness of DNNs on noisy
data.

In the next section we discuss some related works. The
main idea of noisy training will be presented in Section 3 and
the experimental justification will be presented in Section 4.
The entire paper will be concluded by Section 5.

2. RELATED WORK

The noisy training approach proposed in this paper is highly
motivated by the noise injection technique which has been
studied for a long time in neural computation [10, 11, 12, 13].
This paper extends these studies in two aspects: first, we ex-
amine the behavior of noise-injection in DNN training which
is a more challenging task; second, we study mixture of mul-
tiple noises at various levels of signal-to-noise ratios(SNR),
which is different from the conventional noise injection that
assumes small and Gaussian-like injected noises.

Another related work of this study is the DAE ap-
proach [8, 9]. Both the DAE and noisy training sample ran-
dom noises to corrupt input signals, though the DAE targets
at signal / feature recovery while the noisy training proposed
in this paper targets at classification of context-dependent
states.
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Finally this work is also related to the multi-condition
training [4] in the sense that the training takes noises of multi-
ple conditions. However, our study focuses on random noise
corruption, which on the one hand learns noise patterns as the
multi-condition training, and on the other hand, it changes the
cost function of the training task so that generalization capa-
bility of the resulting DNN is improved.

3. NOISY TRAINING

The basic idea of DNN noisy training is as follows: firstly
sample some segments from some real-life noise recordings,
and then mix these noise segments with the original train-
ing speech; finally employ the corrupted speech data to train
the DNN as usual. The rationale of this approach is two-
fold: firstly the noise patterns within the introduced noise sig-
nals can be learned and thus compensated in the test, which
is straightforward and similar to the multi-condition train-
ing; secondly, the noises provide some perturbation in model
training so that generalization capability of the DNN can be
improved, which is supported by the noise injection theory.
We therefore start from noise injection and then present how
to realize the noisy training.

3.1. Noise injection

It has been known for two decades that using noises to cor-
rupt input features in neural network training can improve
generalization capability of the resulting network [14]. A
bunch of theoretical studies have been presented to under-
stand the implication of this ‘noise injection’. Now it is
clear that involving a small magnitude of noise in the in-
put is equivalent to introducing a certain regularity in the
objective function, which in turn encourages the network
converging to a smoother mapping function [15]. More pre-
cisely, with noise injection, the training favors an optimal
solution at which the objective function is less sensitive to the
change of the input [11]. Further studies showed that noise
injection is closely correlated to some other well-known tech-
niques, including sigmoid gain scaling and target smoothing
by convolution [16], at least with Gaussian noises and shal-
low networks such as multi-layer perceptrons (MLP) with a
single layer. The relationships among regularization, weight
decay and noise injection, on the one hand, provide a bet-
ter understanding for each individual technique, and on the
other hand, motivate some novel and efficient algorithms. For
example, Bishop showed that noise injection can be approxi-
mated by a Tikhonov regularization on the square error cost
function [12]. Finally, we note that noise injection can be
conducted in different ways, such as perturbation on weights
and hidden units [10], though we just consider the noise
injection on input units in this paper.

In order to highlight the rationale of noise injection (and
so noisy training), we reproduce the formulation and deriva-
tion in [11] but migrate the derivation to the case of cross
entropy cost which is usually used in classification problems
such as ASR.

First of all, formulate an MLP as a nonlinear mapping
function fθ : RM 7−→ RK where M is the input dimen-
sion and K is the output dimension, and θ encodes all the
parameters of the network including weights and biases. Let
x ∈ RM denotes the input variable, and y ∈ {0, 1}K denotes
the target label which follows the 1-of-K coding scheme. The
cross entropy cost is defined as follows:

E(θ) = −
N∑
n=1

K∑
k=1

{y(n)lnfk(x
(n))}

where n indexes the training samples and k indexes the out-
put units. Considering an identical and independent noise v
whose first and second moments satisfy the following con-
straints:

E{v} = 0 E{v2} = εI,

where I is the M -dimensional identity matrix. Applying the
Taylor series of lnf(x), the cost function with the noise in-
jection can be derived as follows:

Ev(θ) = −
N∑
n=1

K∑
k=1

{y(n)
k lnfk(x

(n) + v(n))}

≈ −
N∑
n=1

K∑
k=1

{y(n)
k lnfk(x

(n))}

−
N∑
n=1

K∑
k=1

y
(n)
k {v

(n)T 5fk(x(n))

fk(x(n))
+

1

2
v(n)THk(x

(n))v(n)}

where Hk(x) is defined as follows:

Hk(x) =
−1
fk(x)

5 fk(x)5 fk(x)
T
+

1

f2k (x)
55fk(x).

Since v(n) is independent of x(n) and E{v} = 0 , the first
order item vanishes and the cost is written as:

Ev(θ) ≈ E(θ)− ε

2

K∑
k=1

tr(H̃k) (1)

where
H̃k =

∑
n∈Ck

Hk(x
(n))

and Ck is the set of indices of the training samples belonging
to the k-th class.

In order to understand the implication of (1), an auxiliary
function can be defined as follows:

E(θ,v) = −
N∑
n=1

K∑
k=1

{y(n)
k lnfk(x

(n) + v)}

where v is a small change to the input vectors {x(n)}. Note
that E(θ,v) differs from Ev(θ): v in E(θ,v) is a fixed value
for all x(n) while v(n) in Ev(θ) is a random variable and dif-
fers for each training sample. The Laplacian of E(θ,v) with
respect to v is computed as follows:
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52E(θ,v) = tr{∂
2E(θ,v)

∂v2
}

= −tr{
N∑
n=1

K∑
k=1

y
(n)
k Hk(x

(n) + v)}

= −tr{
K∑
k=1

∑
n∈Ck

Hk(x
(n) + v)} (2)

Comparison of (2) and (1) gives:

Ev(θ) ≈ E(θ) +
ε

2
52 E(θ, 0). (3)

Equation (3) indicates that injecting noises in the input
is equivalent to placing a regularization on the cost function.
This regularization is related to the second order derivatives
of the cost function with respect to the input, and its strength
is controlled by the magnitude of the injected noise. Since
52E(θ, 0) is positive at the optimal solution of θ, the reg-
ulated cost function tends to accept solutions with a smaller
curvature of the cost. In other words, the new cost function
Ev(θ) is less sensitive to the change on inputs, and therefore
may lead to better generalization capability. Note that this
result is identical to the one obtained in [11] where the cost
function is the square error.

3.2. Noisy deep learning

The derivation in the previous section provides theoretical
justification for our noisy training; however, it is still un-
clear if this kind of training scheme works for the DNN model
which involves a large number of parameters and thus tends
to exhibit a highly complex cost function. Particularly, the
derivation of (3) assumes small noises with diagonal covari-
ances, while in practice we wish to learn complex noise pat-
terns that may be large in volume and fully dimensional corre-
lated. We therefore investigate how the noise injection works
for DNN training when the injected noises are in large volume
and real-life. In order to simulate noises in practical scenar-
ios, the following scheme is designed.

For each speech signal (utterance), we first choose which
type of noise to use to corrupt it. Assuming that there are n
types of noises, we randomly select a noise type following a
multinomial distribution:

v ∼Mult(µ1, µ2, ..., µn).

The parameters {µi} are sampled from a Dirichlet distribu-
tion:

(µ1, µ2, ..., µn) ∼ Dir(α1, α2, ..., αn)

where the parameters {αi} are manually set to control the
base distribution of the noise type selection. This hierarchical
sampling approach (Dirichlet followed by multinomial) sim-
ulates various operation environments where the noise type
distributions are different. Note that we allow a special noise
type: ‘no-noise’ which means that the speech signal is not
corrupted.

Secondly, sample the noise level (i.e., SNR). This sam-
pling follows a Gaussian distributionN (µSNR, σSNR) where
µSNR and σSNR are both manually defined. If the noise type
is no-noise, then the SNR sampling is not needed.

The last step is to sample an appropriate noise segment
according to the noise type. This is achieved following a
uniformed distribution, i.e., randomly select a starting point
in the noise speech, and then excerpt a segment of the same
length as the speech signal to corrupt.

Finally, the selected noise segment is scaled to reach
the required SNR level, and then is mixed with the original
speech signal. The noise-mixed speech is fed into the DNN
to conduct network training.

4. EXPERIMENTS

4.1. Databases

The experiments were conducted with the wall street journal
database. The setting is largely standard: the training part
used the wsj si284 training dataset, which involves 37318 ut-
terances or about 80 hours of speech signals. The wsj dev93
dataset (503 utterances) was used as the development set for
parameter tuning and cross validation in DNN training. The
wsj eval93 dataset (213 utterances) was used to conduct eval-
uation.

Note that the wsj database was recorded in a noise-free
condition. In order to simulate noise-corrupted speech sig-
nals, the DEMAND noise database1 was used to sample noise
segments. This database involves 18 types of noises, from
which we selected 2 types (white and cafeteria) as ‘known
noise’ and 6 types (car, restaurant, train station, bus, park) as
‘unknown noise’. The known noises are used to verify the
capability of noise pattern learning of the proposed approach,
while the unknown noises are used to test its generalizability.

4.2. Experimental settings

We used the Kaldi toolkit2 to conduct the training and evalu-
ation, and largely followed the wsj s5 recipe. Specifically, the
standard MFCC is used as the feature to train a GMM system
which involves 351 phones and 3447 Gaussian mixtures. The
DNN system is then trained utilizing the alignments provided
by the GMM system, based on the 40-dimensional Fbank fea-
ture. A symmetric 11-frame window is applied to concatenate
neighboring frames, and an LDA transform is used to reduce
the feature dimension to 200, which is used as the DNN input
feature.

The DNN architecture involves 4 hidden layers and each
layer consists of 1200 units. The output layer is composed of
3447 units, equal to the total number of Gaussian mixtures in
the GMM system. The cross entropy is set as the objective of
DNN training, and the stochastic gradient descendent (SGD)
approach is employed to perform optimization, with the mini
batch size set to 256 frames. This setting is quite close to the
GPU recipe used in Kaldi.

In order to inject noises, the signal energy is com-
puted for each training/test utterance, and a noise segment
is randomly selected and scaled according to the expected
SNR; the speech and noise signals are then mixed by simply
time-domain addition. Note that the noise injection is con-
ducted before an utterance-based cepstral mean normalization
(CMN). In noisy training, the training data is corrupted by
noise, while the cross validation data remains clean. Note
that the process of the model training is reproducible in spite

1http://parole.loria.fr/DEMAND/
2http://kaldi.sourceforge.net/

18



of the randomness of the noise injection, since the random
seed is hard-coded.

In test, the noise type and SNR are all fixed so that we
can evaluate system performance in a specific noise condi-
tion. This is different from the training phase where both the
noise type and SNR can be random. We choose the ‘big dict’
test case suggested in the Kaldi wsj recipe, which is based
on a large dictionary consisting of 150k English words and a
corresponding 3-gram language model.

4.3. Known noise injection

We first study injecting the same noise in training and test,
which can probe the capability of the proposed method in
noise pattern learning. We choose the two ‘known noises’
to conduct the experiment: white noise and cafeteria noise,
and study two different injection methods: the narrow band
injection where the SNR variance is set close to 0 (σSNR =
0.01) so the noise level concentrates at a particular value de-
fined by µSNR, and the broad band injection where the SNR
variance is set to a large value (σSNR = 10), which allows
substantially changed noise magnitudes. Note that the noises
injected to the test utterances are always narrow band.

The recognition performance in terms of word error rates
(WER) are presented in Fig. 1 and Fig. 2 for white noise injec-
tion and cafeteria noise injection respectively. In the figures,
the narrow band injection is presented as solid lines and the
broad band injection is presented as bars. We can observe that
the baseline system trained with clean speech (the blue line)
is highly vulnerable against noise corruption, particularly in
the case of white noise. With noisy training, the performance
on noise conditions is remarkably improved. We also find
that the narrow band injection is the most effective on test
conditions with matched SNRs (which can be regarded as the
upper bound of performance of the multi-condition training).
This is expected as the noisy training teaches noise patterns
at a particular SNR. In contrast, the broad band noise injec-
tion is generally effective: in almost all the cases, injecting
broad band noise with µSNR = 15db performs the best, and
more interestingly, this noise injection does not substantially
reduce performance on clean speech. This is highly promis-
ing because it enables us to treat noises with different SNRs
with a single training.
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Fig. 1. WER with white noise injection.

4.4. Unknown noise injection

In the second experiment, we examine the noisy training for
unknown noises. Specifically, we use the known noises (white
noise and cafeteria noise) to train the DNN model, and then
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Fig. 2. WER with cafeteria noise injection.

test it against speech signals corrupted by the 6 types of un-
known noises. It deserves to highlight that the special ‘no-
noise’ type is also involved in the Dirichlet sampling (ref.
Section 3.2), and distributed uniformly together with the other
two noise types. The SNR sampling concentrates at 15db with
a variance of 10, which is the best configuration obtained
in the previous experiment. The WER results are shown in
Fig. 3, where the lines present performance of the baseline
system, and the bars present performance with noisy train-
ing. We see that in almost all the conditions, noisy training
provides significant performance improvement, demonstrat-
ing its effectiveness in learning true patterns of human speech.
There is an exception, however, in the case of car noise, where
the performance with noisy training is almost the same as that
of the baseline. This is probably due to the fact that the car
noise is significantly different from the two types of noises
involved in training.
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Fig. 3. WER with unknown noise injection. The model was
trained with white noise and cafeteria noise injected.

5. CONCLUSIONS

We proposed a noisy training approach for DNN-based
speech recognition. The analysis and experiments showed
that by injecting some noises in input speech, the noise
patterns can be effectively learned and the generalization
capability of the learned DNNs can be improved. Both the
two advantages result in substantial performance improve-
ment with DNN-based ASR systems in noise conditions.
Future work involves investigating various noise injection
approaches (e.g., weighted noise injection) and evaluating
with more noise types.
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