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Abstract

In this article, we conduct a comprehensive simulation study for the optimal
scores of speaker recognition systems that are based on speaker embedding. For
that purpose, we first revisit the optimal scores for the speaker identification (SI)
task and the speaker verification (SV) task in the sense of minimum Bayes risk
(MBR), and show that the optimal scores for the two tasks can be formulated as
a single form of normalized likelihood (NL). We show that when the underlying
model is linear Gaussian, the NL score is mathematically equivalent to the PLDA
likelihood ratio (LR), and the empirical scores based on cosine distance and
Euclidean distance can be seen as approximations of this linear Gaussian NL
score under some conditions.

Based on the unified NL score, we conducted a comprehensive simulation study
to investigate the behavior of the scoring component on both the SI task and SV
task, in the case where the distribution of the speaker vectors perfectly matches
the assumption of the NL model, as well as the case where some mismatch is
involved. Importantly, our simulation is based on the statistics of speaker vectors
derived from a practical speaker recognition system, hence reflecting the behavior
of the NL scoring in real-life scenarios that are full of imperfection, including
non-Gaussianality, non-homogeneity, and domain/condition mismatch.
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1 Introduction
With decades of investigation, speaker recognition has achieved significant perfor-

mance, and has been deployed in a wide range of practical applications [10, 26, 48].

Speaker recognition research concerns two tasks: speaker identification (SI) that

identify the true speaker from a set of candidates, and speaker verification (SV)

that tests if an alleged speaker is the true speaker. The performance of SI systems

is evaluated by identification rate (IDR), the percentage of the trials whose speakers

are correctly identified. SV systems require a threshold to decide whether accepting

the speaker or not and the performance is evaluated by equal error rate (EER), to

represent the trade-off between fail to accept and fail to reject.

Modern speaker recognition methods are based on the concept of speaker em-

bedding, i.e., representing speakers by fixed-length continuous speaker vectors. This

embedding is traditionally based on statistical models, in particular the i-vector

model [17]. Recently, deep learning methods gained much attention and embed-

ding based on deep neural nets (DNN) becomes popular [35, 60]. With the efforts

from multiple research groups, deep speaker embedding models have been signifi-

cantly improved by comprehensive architectures [14, 29], smart pooling approach-
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es [8, 11, 44, 66], task-oriented objectives [3, 18, 22, 34, 62, 70], and carefully de-

signed training schemes [39, 57, 64]. As a result, the deep embedding approach has

achieved state-of-the-art performance [51]. Among various deep embedding archi-

tectures, the x-vector model is the most popular [55].

A key component of the speaker embedding approach is how to score a trial. Nu-

merous empirical evidence has shown that the likelihood ratio (LR) derived by prob-

abilistic linear discriminant analysis (PLDA) [28, 46] works well in most situations,

and when the computational resource is limited, the cosine distance is a reasonable

substitution. In some circumstances in particular on SI tasks, the Euclidean distance

can be used. In this article, we revisit the scoring methods for speaker recognition

from the perspective of minimum Bayes risk (MBR). The analysis shows that for

both the SI and SV tasks, the MBR optimal score can be formulated as a single

form pk(xxx)
p(xxx) , which we call a normalized likelihood (NL) score. In the NL score, pk(xxx)

is the likelihood term that represents the probability that the test utterance xxx be-

longs to the target class k, and p(xxx) is a normalization term that represents the

probability that xxx belongs to all possible classes. We will show that the NL score

is equivalent to PLDA LR, in the case where the speaker vectors are modeled by a

linear Gaussian and the target class is represented by finite enrollment utterances.

We will also show that under some conditions, the empirical scores based on cosine

distance and Euclidean distance can be derived from the linear Gaussian NL score.

Based on the unified formulation of the NL score, we conducted a comprehen-

sive simulation study on the performance bound of a speaker recognition system,

on both the SI and SV tasks. In particular, by imitating the statistical properties

of speaker vectors derived from a real recognition system, our simulation gained

deep understanding of a modern speaker recognition system, for instance the upper

bound of its performance, and its behavior with real-life imperfection, including

non-Gaussianality, non-homogeneity, training-deployment domain mismatch and

enrollment-test condition mismatch. To the best knowledge of the author, this is the

first comprehensive simulation study on the scoring component of modern speaker

recognition systems. Note that the NL formulation is a prerequisite for the simu-

lation study: it not only allows using the same score to investigate the behavior of

both the SI and SV systems, but also offers the possibility to decompose the scor-

ing model into separate components (by using different statistical models), which

is important when we analyze the domain and condition mismatch.

It should be noted that the NL formulation is not new and may trace back to the

LR scoring method with the Gaussian mixture model-Universal background model

(GMM-UBM) framework [49]. Within the speaker embedding framework, the NL

form was derived by McCree et. al. [6, 42] from the hypothesis test view (the one

used for PLDA inference). Our derivation is based on the MBR decision theory,

which directly affirms the optimum of the NL score.

The rest of the paper is organized as follows: Section 2 will revisit the MBR

optimal scoring theory and propose the NL score. Section 3 presents the simulation

results. Some discussions are presented in Section 4 and the entire paper is concluded

in Section 5.
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2 Theory and methods
2.1 MBR optimal decision and normalized likelihood

It is well known that an optimal decision for a classification task should minimize

the Bayes risk (MBR):

k∗ = arg min
k

∑
j

`jkp(j|xxx) (1)

where xxx is the observation, `jk is the risk taken when classifying an observation

from class j to class k. In the case where `jk is 0 for j = k and a constant c for any

j 6= k, the MBR decision is equal to selecting the class with the largest posterior

probability:

k∗ = arg max
k

p(k|xxx). (2)

We call this result the MAP principle. We will employ this principle to derive the

optimal score for the SI and SV tasks in speaker recognition.

2.1.1 MBR optimal score for SI

In the SI task, our goal is to test K outcomes {Hk: xxx belongs to class k} and make

the decision which outcome is the most probable. Following the MAP principle, the

MBR optimal decision is to choose the k-th outcome that obtains the maximum

posterior:

k∗ = arg max
k

p(Hk|xxx) = arg max
k

pk(xxx)p(k), (3)

where k indexes the classes, and pk(xxx) represents the likelihood of xxx in class k. In

most cases, there is no preference for any particular class and so the prior p(k) for

each class k shall be equal. We therefore have:

k∗ = arg max
k

pk(xxx). (4)

It indicates that MBR optimal decisions can be conducted based on the likelihood

pk(xxx). In other words, the likelihood is MBR optimal for the SI task.

2.1.2 MBR optimal score for SV

For the SV task, our goal is to test two outcomes and check which one is more

probable: { H0: xxx belongs to class k; H1: xxx belongs to any class other than k }.
Following the MAP principle, the MBR optimal decision should be based on the

posterior p(Hb|xxx) : b = {0, 1}, if the risk for H0 and H1 is symmetric. If the priors

p(H0) and p(H1) are equal, we have:
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p(Hb|xxx) =
p(xxx|Hb)

p(xxx|H0) + p(xxx|H1)
. (5)

Since p(H0|xxx)+p(H1|xxx) = 1, the decision can be simply made according to p(H0|xxx):

b∗ =

0 if p(H0|xxx) ≥ 0.5

1 if p(H0|xxx) < 0.5.
(6)

In practice, by setting an appropriate threshold on p(H0|xxx), one can deal with

different priors and risk on H0 and H1. We highlight that for any class k, this

threshold is only related to the prior and risk. This is important as it means that

based on p(H0|xxx), MBR optimal decisions can be made simultaneously for all the

classes by setting a global threshold. A simple case is to set the threshold to 0.5

when the risk is symmetric and the priors are equal. In summary, p(H0|xxx) is MBR

optimal for the SV task.

Note that when computing the posterior p(H0|xxx), p(xxx|H0) is exactly the likelihood

pk(xxx), and p(xxx|H1) summarizes the likelihood of all possible classes except the class

k. In most cases, an SV system is required to deal with any unknown class, and so

the class space is usually assumed to be continuous. To simplify the presentation,

we will assume each class being uniquely represented by the mean vector µµµ and p(µµµ)

is continuous. In this case, the contribution of each class is infinitely small and so

p(xxx|H1) is exactly the marginal distribution (or evidence) p(xxx) =
∫
p(xxx|µµµ)p(µµµ)dµµµ.[1]

We therefore obtain the MBR optimal score for SV:

p(H0|xxx) =
pk(xxx)

pk(xxx) + p(xxx)
. (7)

2.1.3 Normalized likelihood

Note that for the SV task, according to Eq.(5), the posterior p(H0|xxx) is determined

by the ratio p(xxx|H0)/p(xxx|H1), which is essentially the class-dependent likelihood

pk(xxx) normalized by the class-independent likelihood p(xxx). We therefore define the

normalized likelihood (NL) as:

NL(xxx|k) =
p(xxx|H0)

p(xxx|H1)
=
pk(xxx)

p(xxx)
. (8)

Note that the NL is linked to the posterior p(H0|xxx) by a monotone function:

[1]One may argue that p(xxx) involves the quantity pk(xxx), and so is not accurately

p(xxx|H1). This is not true however, as the contribution of pk(xxx) to p(xxx) is zero if p(µµµ) is

continuous. This also means that the likelihood that xxx belongs to all classes equals

to the likelihood that xxx belongs to all classes other than k. Note that the prior p(µk)

is different from the prior p(H0): p(µk) is the density that the class mean of a speaker

is at µk, while p(H0) is the probability that a trial is positive, i.e., a genuine speaker.
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NL(xxx|k) =
p(H0|xxx)

1− p(H0|xxx)
. (9)

Since the posterior p(H0|xxx) is MBR optimal for the SV task, the NL is also MBR

optimal as a threshold on p(H0|xxx) that leads to (global) MBR decisions can be

simply transformed to a threshold on the NL, by which the same MBR decisions

can be achieved. For example, the MBR decision is obtained when p(H0|xxx) = 0.5 if

the risk on H0 and H1 is equal, which is equal to say NL(xxx|k) = 1.0, according to

Eq.(9).

Interestingly, the NL score is also MBR optimal for the SI task. This is because

the normalization term p(xxx) is the same for all classes in the SI task, so the decisions

made based on the NL score is equal to those based on the likelihood pk(xxx). Since

the likelihood is MBR optimal for the SI task, the NL score is MBR optimal for the

SI task as well. We therefore conclude that the NL score is MBR optimal

for both the SI and the SV tasks, under some appropriate assumptions.

It should be noted that the NL form Eq. (8) is a high-level definition and it can

be implemented in a flexible way. In particular, pk(xxx) and p(xxx) can be any models

that produce the class-dependent and class-independent likelihoods respectively.

Finally, NL is not new for speaker recognition. It is essentially the likelihood

ratio (LR) that has been employed for many years since the GMM-UBM regime,

where the score is computed by pGMM (xxx)
pUBM (xxx) . We use the term NL instead of LR in this

paper in order to: (1) highlight the different roles of the numerator pk(xxx) and the

denominator p(xxx) in the ratio; (2) discriminate the normalization-style LR (used

by NL) and the comparison-style LR, e.g., the one used by PLDA inference that

compares the likelihoods that a group of samples are generated from the same and

different classes.

2.2 NL score with linear Gaussian model

Although the NL framework allows flexible models for the class-dependent and

class-independent likelihoods, linear Gaussian model is the most attractive due to

its simplicity. We derive the NL score with this model, for the case (1) the class

means have been known and (2) the class means are unknown and have to be

estimated from enrollment data.

2.2.1 Linear Gaussian model

We shall assume a simple linear Gaussian model for the speaker vectors that we

will score:

p(µµµ) = N(µµµ; 000, Iεεε2) (10)

p(xxx|µµµ) = N(xxx;µµµ, σ2I), (11)



Wang Page 6 of 33

where µµµ ∈ RD represents the means of classes and xxx ∈ RD represents observations,

and εεε2 ∈ (R+)D and σ2 ∈ R+ represent the between-class and within-class vari-

ances respectively. Applied to speaker recognition, εεε and σ represent the between-

speaker and within-speaker variances respectively. We highlight that any linear

Gaussian model can be transformed into this simple form (i.e., isotropic within-

class covariance and diagonal between-class covariance) by a linear transform such

as full-dimensional linear discriminant analysis (LDA), and this linear transform

will not change the identification and verification results as we will show in Sec-

tion 2.3. Therefore, study with the simple form Eq. (10) and Eq. (11) is sufficient

for us to understand the behavior of a general linear Gaussian model with complex

covariance matrices.

With this model, it is easy to derive the marginal probability p(xxx) and the poste-

rior probability p(µµµ|xxx) as follows [4]:

p(xxx) = N(xxx; 000, I(εεε2 + σ2)) (12)

p(µµµ|xxx) = N(µµµ;
εεε2

εεε2 + σ2
xxx, I

σ2εεε2

εεε2 + σ2
), (13)

where all the operations between vectors are element-wised and appropriate dimen-

sion expansion has been assumed, e.g., εεε2 + σ2 = εεε2 + [σ2, ..., σ2]T .

If the observations are more than one, the posterior probability has the form:

p(µµµ|xxx1, ...,xxxn) = N(µµµ;
nεεε2

nεεε2 + σ2
x̄xx, I

σ2εεε2

nεεε2 + σ2
), (14)

where x̄xx is the average of the observations. These equations will be extensively used

in the following sections.

2.2.2 Case 1: class means are known

In this case, we assume that the class means are known. This is equivalent to say

that each class is represented by infinite enrollment data.

NL/Euclidean/Cosine scores for SI

For the SI tasks, decisions based on the NL score and the likelihood pk(xxx) are the

same and both are MBR optimal. With the linear Gaussian model, the likelihood

is:

pk(xxx) = N(xxx;µµµk, σ
2I). (15)

A simple rearrangement shows that:

log pk(xxx) = − 1

2σ2
||xxx−µµµk||2 + const (16)
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Since the variance σ is the same for all classes, the MBR decision can be equally

based on the Euclidean distance, e.g.,

se = ||xxx−µµµk||2, (17)

where we use se to denote the score based on the Euclidean distance. In short, the

Euclidean score is MBR optimal for the SI task when the class means are known.

Next, we will show that in a high-dimensional space, the Euclidean distance is

well approximated by the cosine distance, under the linear Gaussian assumption.

First notice that the Gaussian annulus theorem [5] states that for a d-dimensional

Gaussian distribution with the same variance ε in each direction, nearly all the

probability mass is concentrated in a thin annulus of width O(1) at radius
√
dε,

as shown in Figure 1. This slightly anti-intuitive result indicates that in a high-

dimensional space, most of the samples from a Gaussian tend to be in the same

length. Rigid proof for this theorem can be found in [5]. Note that the distribution

of real speaker vectors is not necessarily a perfect Gaussian; However, in most cases

it can be well approximated by a Gaussian, especially when some normalization

techniques are employed [23]. Therefore, the Gaussian annulus theorem can be

readily used for speaker vectors.

Figure 1 Left: Gaussian annulus theorem [5]: for a d-dimensional multi-variant Gaussian with unit

variance in all directions, for any β ≤
√
d, all but at most 3e−cβ

2
of the probability mass lies

within the annulus
√
d− β ≤ ||x|| ≤

√
d+ β, where c is a fixed positive constant. The color region

shown in the figure represents the annulus. Rigid proof can be found in [5]. Right: The length
distribution of samples from a 512-dimensional Gaussian distribution N(0, I).

Now we rewrite the Euclidean score as follows:

se = ||xxx||2 + ||µµµk||2 − 2 cos(xxx,µµµk)||xxx|| ||µµµk||, (18)

since ||µµµk|| ≈
√
dε, cos(xxx,µµµk) will be the only term that discriminates the probability

that xxx belongs to different class k. This leads to the cosine score:

sc = cos(xxx,µµµk). (19)
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This result provides the theoretical support for the cosine score. It should be

noted that this approximation is only valid for high-dimensional data, and the class

means must be from a Gaussian with a zero mean. Therefore, data centralization

is important for cosine scoring.

NL/Euclidean/Cosine scores for SV

For the SV task, the MBR optimal decision should be based on the NL score.

With the linear Gaussian model, one can easily show that:

logNL(xxx|k) = − 1

2σ2
||xxx−µµµk||2 +

1

2
|| xxx√

εεε2 + σ2
||2 + const. (20)

A simple rearrangement shows that:

logNL(xxx|k) = − 1

2σ2
(||xxx||2 + ||µµµk||2 − 2 cos(xxx,µµµk)||xxx|| ||µµµk||) +

1

2
|| xxx√

εεε2 + σ2
||2 + const

∝ −
{
|| εεε√

σ2 + εεε2
xxx||2 + ||µµµk||2 − 2 cos(xxx,µµµk)||xxx|| ||µµµk||

}
. (21)

It can be seen that if the within-class variance σ2 is significantly larger than the

between-class variance εεε2 (we refer to element-based comparison here and after),

the logNL will significantly depart from the Euclidean distance, but more closely

related to the cosine distance. Essentially, if we admit that both ||xxx||2 and ||µµµk||2

tend to be constant due to the Gaussian annulus theorem, the cosine score will

be a good approximation for the optimal logNL. Conversely, if the between-class

variance εεε2 is sufficient larger than the within-class variance σ2, it can be well

approximated by the Euclidean score.

2.2.3 Case 2: class means are unknown

In the pervious section, we have supposed that the class means are known precisely.

In real scenarios, however, this is not possible. We usually have only a few enrollment

samples (e.g., less than 3) to represent the class, and the SI or SV evaluation should

be based on these representative samples. In this case, the class means are unknown

and have to be estimated from the enrollment data, leading to uncertainty that must

be taken into account during scoring.

NL/Euclidean/Cosine scores for SI

Firstly consider the MBR optimal decision for SI. As in the known-mean scenario,

we compute the likelihood for the k-th class:

pk(xxx) = N(xxx;µµµk, σ
2I). (22)

An important difference here is that µµµk is unknown, and so has to be estimated

from the enrollment samples belonging to the same class. Denoting these samples

by xxxk1 , ...xxx
k
nk

and their average by x̄xxk, we have the posterior probability for the class

mean µµµk, according to Eq. (14):
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p(µµµk|xxxk1 , ...xxxknk
) = N(µµµk;

nkεεε
2

nkεεε2 + σ2
x̄xxk, I

σεεε2

nkεεε2 + σ2
). (23)

The likelihood pk(xxx) can therefore be computed by marginalizing over µµµk, accord-

ing to this posterior. Following Eq.(12), we have:

pk(xxx) = p(xxx|xxxk1 , ...,xxxknk
)

=

∫
p(xxx|µµµk)p(µµµk|xxxk1 , ...xxxknk

)dµµµk

= N(xxx;
nkεεε

2

nkεεε2 + σ2
x̄xxk, (σ

2 + I
σεεε2

nkεεε2 + σ2
)). (24)

Note that with the class mean uncertainty, the Euclidean score is not MBR opti-

mal anymore. If the number of enrollment observations are the same for all classes,

the likelihood is exclusively determined by the class mean µµµk. In this case, an a-

mended version of the Euclidean score is optimal, where the class mean is computed

by nkεεε
2

nkεεε2+σ2µµµk. Note that the scale nkεεε
2

nkεεε2+σ2 has been applied to compensate for the

uncertainty of the maximum-likelihood mean estimation µµµk. Intuitively, a smaller n

or a larger σ2/εεε2 lead to more uncertainty, so the compensation term will be more

significant. With more enrollment samples, the compensation term will converge to

one, and the standard Euclidean score is recovered.

Another observation is that the scale compensation on µµµk does not change its di-

rection. This implies that the cosine score does not need any amendment to account

for the uncertainty. However, it does not mean that the cosine score is not impacted

by the class mean uncertainty; it just means that the cosine score is not impacted

as much as the Euclidean score.

NL/Euclidean/Cosine scores for SV

Now we normalize the score pk(xxx) to make it suitable for SV, by introducing a

normalization term p(xxx):

NL(xxx|k) =
p(xxx|xxx1, ...,xxxnk

)

p(xxx)
. (25)

Note that the normalization term p(xxx) is not impacted by the mean uncertainty,

and therefore remains the same value as in the known-mean scenario. A simple

computation shows that:

logNL(xxx|k) ∝ −|| xxx− µ̃µµk√
σ2 + εεε2σ2

nkεεε2+σ2

||2 + || xxx√
εεε2 + σ2

||2, (26)

where we have defined:

µ̃µµk =
nkεεε

2

nkεεε2 + σ2
x̄xxk. (27)



Wang Page 10 of 33

To compare with the Euclidean score and the cosine score, Eq. (25) can be refor-

mulated to:

logNL(xxx|k) ∝ −
{ nkεεε

4

(σ2 + εεε2)(nkεεε2 + σ2)
||xxx||2+||µ̃µµk||2−2 cos(xxx, µ̃µµk)||xxx|| ||µµµk||

}
. (28)

It can be seen that if the between-class variance εεε is significantly smaller than the

within-class variance σ, the first two terms on the right hand side of Eq. (28) tend

to be small and logNL can be approximated by the cosine score. On the opposite,

if the between-class variance εεε is significantly larger than the within-class variance

σ, the amended Euclidean score will be a good approximation. Finally, if nk is

sufficiently large, Eq. (28) will fall back to Eq. (21) of the know-mean case.

2.3 Remarks on properties of NL score

Remark 1: Equivalent to PLDA LR

The NL score based on the linear Gaussian model and unknown class means

is equivalent to the PLDA LR [28, 46]. PLDA assumes the same linear Gaussian

model, but uses the following likelihood ratio as the score:

LRPLDA(xxx) =
p(xxx,xxx1, ...,xxxn from the same class)

p(xxx from a unique class)p(x1, ..., xnx1, ..., xnx1, ..., xn from a unique class)

Note that this likelihood ratio is different from the likelihood ratio of the NL score

in Eq. (8). The PLDA LR can be formally represented by:

LRPLDA(xxx) =
p(xxx,xxx1, ...,xxxn)

p(xxx)p(xxx1, ...,xxxn)
(29)

where p(xxx1, ...,xxxn) denotes the probability that xxx1, ...,xxxn belong to the same but an

unknown class. In principle, this quantity can be computed by marginalizing over

the class mean:

p(xxx1, ...,xxxn) =

∫
p(xxx1, ..,xxxn|µµµ)p(µµµ)dµµµ. (30)

A simple re-arrangement shows that:

LRPLDA(xxx) =
p(xxx|xxx1, ...,xxxn)

p(xxx)
=

∫
p(xxx|µµµ)p(µµµ|xxx1, ...,xxxn)dµµµ

p(xxx)
, (31)

where we have divided the numerator p(xxx,xxx1, ...,xxxn) by p(xxx1, ...,xxxn), which con-

verts the marginal distribution p(xxx,xxx1, ...,xxxn) to the conditional distribution

p(xxx|xxx1, ...,xxxn). By this change, the numerator is the likelihood of xxx belonging to

the class represented by xxx1, ...,xxxn, and the denominator is the likelihood xxx belong-

ing to any class. This is exactly the normalized likelihood in Eq.(25). We therefore
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conclude that the PLDA LR is an NL where the underlying probabilistic model

is linear Gaussian and the class means are estimated from finite enrollment data.

Since the NL score is MBR optimal for both SI and SV tasks, an imme-

diate conclusion is that the PLDA LR is also MBR optimal for the two

tasks. Note that the NL form of the PLDA LR was discussed by McCree et. al.

[6, 42].

Compared to PLDA LR, NL possesses some attractive properties and brings some

interesting merits. A particular merit is that NL decouples the score computation

into three steps: posterior computation based on enrollment data, likelihood compu-

tation for the test data based on the posterior, and normalization based on a global

model. This offers an interesting correspondence between the scoring model and

the scoring process. We therefore can investigate the behavior of each component

and design fine-grained treatment for real-life imperfection, e.g., the enrollment-test

mismatch that will be presented in Section 3.7.

Remark 2: Invariance with invertible transform

Suppose an invertible transform g on xxx, and the probabilities on xxx and g(xxx) are

p and p′ respectively. According to the principle of distribution transformation for

continuous variables [50], p and p′ has the following relation:

p′(g(xxx)) = p(xxx)|det
∂g−1(xxx)

∂xxx
|, (32)

where the second term is the absolute value of the determinant of the Jacobian

matrix of g−1, the inverse transform of g. This term reflects the change of the

volume with the transform, and is often called the entropy term and denoted by

J(xxx).

For the marginal distribution p(xxx1, ...,xxxn) where xxx1, ...,xxxn are drawn from the

same but an unknown class, one can compute the distribution by:

p(xxx1, ...,xxxn) =

∫ n∏
i=1

p(xxxi|µµµ)p(µµµ)dµµµ

≈
∑
j

n∏
i=1

p(xxxi|µµµj)p(µµµj)∆(µµµj) (33)

where we have divide the µµµ space into a large amount of small areas {∆(µµµj)} with

centers {µµµj}. The approximation will approach to be accurate when the number of

small areas is infinite. With the transform g, we have:

p′(g(xxx1), ..., g(xxxn)) ≈
∑
j

n∏
i=1

p′(g(xxxi)|µµµgj )p
′(g(µµµj))∆(g(µµµj)) (34)

where µµµgj represents the mean of the class centered at µµµj after the transform. More-

over, the transform g does not change the probability within ∆(µµµj), which means:

p(µµµj)∆(µµµj) = p′(g(µµµj))∆(g(µµµj)). (35)
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Putting all the pieces together, we have:

p′(g(xxx1), ..., g(xxxn)) ≈
∑
j

n∏
i=1

p′(g(xxxi)|µµµgj ))p(µµµj)∆(µµµi)

=
∑
j

n∏
i=1

J(xxxi)

n∏
i=1

p(xxxi|µµµj)p(µµµj)∆(µµµi), (36)

where we have applied the rule of the distribution transform shown in Eq. (32). Let

the size of {∆(µµµj)} to be infinite, we have the marginal distribution in the space

induced by transform g:

p′(g(xxx1), ..., g(xxxn)) =
n∏
i=1

J(xxxi)p(xxx1, ...,xxxn). (37)

Substituting back to the NL score, we obtain the invariance of the NL score under

an invertible transform:

NL(g(xxx)|g(xxx1), ..., g(xxxnk
)) =

p′(g(xxx), g(xxx1), ..., g(xxxnk
)

p′(g(xxx))p′(g(xxx1), ..., g(xxxnk
))

=
J(xxx)

∏n
i=1 J(xxxi)p(xxx,xxx1, ...,xxxnk

){
J(xxx)p(xxx)

}{∏n
i=1 J(xxxi)p(xxx1, ...,xxxnk

)
}

= NL(xxx|xxx1, ...,xxxnk
) (38)

where we have employed the PLDA LR form to represent the NL score.

The above derivation indicates that the NL score can be computed in a trans-

formed space induced by an invertible transform. Among all the possible invertible

transforms, the full-dimension LDA is particularly attractive. It can simultaneously

diagonalize the within-class and between-class covariances and regulate the within-

class covariance to be identity. We therefore do not need consider the general

form of distributions when investigating the properties of the NL score,

instead just focusing on the simple form with diagonal covariances, as

we did in the previous sections.

Remark 3: Dimensionality is important

Let’s investigate the benefit of a high-dimensional space. It has been shown [5] that

the distance of two random samples from a n-dimensional Gaussian with variance

ε2 in all directions has a large probability to be:

||xxx− yyy|| =
√

2dε±O(1). (39)

Consider the class means are random samples of a Gaussian with variance ε2, and

each class is a Gaussian with variance σ2. Due to the Gaussian annulus theorem,

the samples of each class will concentrate in the annulus of radius
√
dσ. Since the
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distance of two class means has a large probability to be
√

2dε, it is easy to conclude

that if 2σ < ε, there will be a large probability that most of the classes are well

separated.

More careful analysis shows a better bound. Considering two samples from two dif-

ferent classes respectively, it shows that their distance tend to be
√

∆2 + 2σ2d±O(
√
dσ),

where ∆ is the distance of these two classes, and σ2 is the variance of each

class [5]. Since the samples from the same class tends to be
√

2dσ, one can show if

∆2 ≥ O(
√
dσ), there will be a large probability to identify if two samples are from

the same class or different classes. If the class means are sampled from a Gaussian

with variance ε, we will have ∆2 ≈ 2ε2d. One can easily derive that if σ2 ≤ O(ε4d),

sample pairs from two classes can be well differentiated from sample pairs from

the same class. Note the condition depends on d, which means that with a higher

dimension, classes with larger variances can be separated with a large probability.

In other words, classes in higher dimensional space tend to be more separable.

Remark 4: Direction is important

Another interesting property of a high dimension space is that most of the volume

of a unit ball is concentrated near its “equator” [5], as shown in Figure 2. More

precisely, for any unit-length vector v defining the “north”, most of the volume of

the unit ball lies in the thin slab of points whose dot-product with v has magnitude

O( 1√
d
) [5].

v

Figure 2 Left: Within a unit ball, most of the volume lies in a thin slab whose width is
O( 1√

d
) [5]. Right: The angle between any two samples concentrates in 90◦.

An immediate conclusion is that for any sample from a Gaussian, it is orthogonal

to most of other samples from the same Gaussian. This is evident if we note that

the dot product of any two samples tend to be 1/
√
d, which approaches to zero

with a large d. Combining the Gaussian annulus theorem, we can see that samples

of a high-dimensional Gaussian are mostly scattered across direction rather than

length. In other words, direction is more important than magnitude in a high

dimensional space. In fact, the importance of direction in high-dimensional space

has been noticed by researchers in various domains. For example, it is well-known

that the cosine distance is a better metric compared to the Euclidean distance in

text analysis and information retrieval [13, 52, 67]. The same observation was also

reported in speaker recognition [16, 31].

It is worth noting that all the above conclusions are based on Gaussian distri-

butions. If the data itself is spherical in nature, a directional distribution will be
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naturally preferred, for example the Von Mises-Fisher (VMF) distribution. More

information about directional distributions can be found in [41, 56].

3 Results
In this section, we will discuss the application of the NL score in practical speaker

recognition systems. For simplicity, we only focus on the NL score based on the linear

Gaussian model. The main purpose is to investigate the behavior of the NL score.

Theoretically, NL scoring is MBR optimal if the data satisfy the model assumption,

and real-life imperfection is essentially represented by the mismatch between the

distributions that the model assumes and the data exhibit. We therefore conduct

the investigation by simulating this mismatch, one type per experiment. Note that

all the EER/IDR results reported in this section are based on the NL score.

In order to reflect the behavior of the NL score in real-life systems, we need con-

sider: (1) The true configuration of practical speaker vectors, including the number

of dimensions and classes, the range of the between-class and within-class variances.

These configurations will provide information about the operation point of the NL

scoring, by which we can obtain the expected performance of a speaker recogni-

tion system if the linear Gaussian assumption is satisfied. (2) The deviation of

the distribution of practical speaker vectors from the linear Gaussian assumption,

in particular the potential problem of non-homogeneity and non-Gaussianlity. The

former concerns how different speakers differ from each other, and the latter con-

cerns how the between-class distribution of the speaker means and the within-class

distributions of individual speakers deviate from Gaussian. By these information,

we can estimate how much performance loss would be expected in practical systems

with the NL scoring.

3.1 Baseline systems

Data We use the VoxCeleb [14, 43] dataset to build an x-vector system and an

i-vector system. The entire database consists of VoxCeleb1 and VoxCeleb2. Al-

l the speech signals were collected from open-source media channels and therefore

involve rich variations in channel, style, and ambient noise. The entire dataset con-

tains 2000+ hours of speech signals from 7000+ speakers. Data augmentation was

applied to improve robustness, with the MUSAN corpus [54] used to generate noisy

utterances, and the room impulse responses (RIRS) corpus [33] was used to generate

reverberant utterances.

x-vector system: The x-vector frontend was created using the Kaldi toolkit [45],

following the SITW recipe. The acoustic features are 40-dimensional Fbanks. The

main architecture contains three components. The first component is the feature-

learning component, which involves 5 time-delay (TD) layers to learn frame-level

speaker features. The slicing parameters for these 5 TD layers are: {t-2, t-1, t, t+1,

t+2}, {t-2, t, t+2}, {t-3, t, t+3}, {t}, {t}. The second component is the statistical

pooling component, which computes the mean and standard deviation of the frame-

level features from a speech segment. The final one is the speaker-classification

component, which discriminates between different speakers. This component has

2 full-connection (FC) layers and the size of its output is 7, 185, corresponding

to the number of speakers in the training set. Once trained, the 512-dimensional

activations of the penultimate FC layer are read out as an x-vector.
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i-vector system: The i-vector frontend was built with the Kaldi toolkit [45],

following the SITW recipe as well. The raw features involve 24-dimensional MFCCs

plus the log energy, augmented by first- and second-order derivatives, resulting in

a 75-dimensional feature vector. This feature is used by the i-vector model. The

universal background model (UBM) consists of 2, 048 Gaussian components, and

the dimensionality of the the i-vectors is set to be 400.

3.2 Statistics of x-vectors and i-vectors

We first look at the properties of different types of speaker vectors. To ensure

sufficient statistical strength, we choose 4000 speakers with sufficient utterances

from the VoxCeleb training data. The number of utterances per speaker in this set

is 45 in average, and the minimum and maximum values are 10 and 438, respectively.

All the data are preprocessed by a full-dimension LDA, by which the accumulated

within-class covariance is normalized to be an identify matrix, and the between-class

covariance becomes diagonal. Note that the full-dimension LDA does not change

the NL scores, but the simplified covariance structure makes the analysis easier.

We compute a number of statistics, regarding the homogeneity (i.e., if all classes

share the same covariance) and Gaussianality of the within-class and between-class

distributions.

� PC direction STD for homogeneity. This tests if the covariance matrices of all

the speakers have the same direction. After PCA, the first principle compo-

nent (PC1) of all the speakers are selected and its mean over the speakers is

computed. The cosine distance between the PC1s of individual speakers and

the mean PC1 is computed. The STD of these cosine scores is used as the

measure to test the PC1 direction variance. The same computation is con-

ducted on all PCs. In this experiment, we report the direction variance on

PC1 and PC2, and the averaged direction variance on the first 10 PCs.

� PC shape STD for homogeneity. Using PC1 as an example, the coefficients

(eigenvalues) of the covariance matrices of all the speakers on the first PC are

calculated, and the STD of these coefficients over all speakers is computed.

The same computation is performed on all the PCs. Since the coefficient on

each PC determines the spreading of the samplings on this direction, the

coefficients on all the PCs determine the shape of the speaker distribution.

The STD of these coefficients over all speakers then test if the distributions

of all speakers have the same shape (regardless of the direction), hence being

noted as PC shape STD. We report the PC shape STD on PC1 and PC2, and

the averaged PC shape STD on the first 10 PCs.

� Averaged PC kurtosis for Gaussianality. On each PC direction, we compute

the kurtosis for each speaker, and then compute the mean of the kurtosis over

all the speakers. The averaged kurtosis over the first 10 PCs is reported.

� Averaged PC skewness for Gaussianality. On each PC direction, we compute

the skewness for each speaker, and then compute the mean of the kurtosis

over all the speakers. The averaged skewness over the first 10 PCs is reported.

� Between-class kurtosis and skewness. The kurtosis and skewness of the class

means, computed on each dimension, and then are averaged.
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To have a comparison with the ideal case where the data are truly linear Gaus-

sian, synthesis datasets are constructed for the x-vectors and i-vectors respectively.

We first sample the same number of classes (4000) using the same between-class

covariance of the true speaker vectors. For each class, we sample the same number

of samples of that class in the real data, using the same within-class covariance

(which is 1.0 in the LDA space). From these synthesis data, we compute the same

statistics as the real speaker vectors. These values can be used to evaluate how the

real dataset departs from a perfect linear Gaussian dataset.

The results are shown in Table 1. It can be seen that the real speaker vectors

exhibit clear non-homogeneity and non-Gaussianality. For non-homogeneity, it looks

like the most variance lies on the shape rather than the direction of the within-

class distributions. Moreover, the x-vectors and i-vectors show similar shape and

direction variances, which means that these two types of speaker vectors are not

much different in terms of non-homogeneity.

For non-Gaussianality, both the x-vectors and i-vectors are clearly non-Gaussian,

in terms of both between-class and within-class distributions. Specifically, it seems

that the most significant difference between x-vectors and i-vectors is that the kur-

tosis of the within-class distribution is much higher with the x-vectors, and the large

positive value suggests that the x-vectors mostly concentrate on the class means.

As for the between-class distribution, it seems that for both the x-vectors and

i-vectors, the distribution is Gaussian, and the difference between the two kinds of

speaker vectors is not substantial.

We also compute the EER and IDR results with the NL scoring. In this test,

one sample from each class is used for enrollment and one sample is used for test.

To ensure statistical significance, we run the test 500 times, and report the EER

and IDR results as well as the variation. The results are shown in the bottom of

Table 1. It can be seen that if the data are truly linear Gaussian, the NL scoring

ensures a very high performance. This performance is an upper bound that the NL

scoring can achieve. In real-life situations, this upper bound is hard to reach, due

to the non-homogeneity and non-Gaussianality of the data in nature, as well as the

complexity associated with domain and condition mismatch.

In the reset of this section, we will conduct a series of simulation experiments, to

study the impact of various factors related to the real-life imperfection. We hope

this analysis will help identify the key factors that should be cared when designing a

practical speaker recognition system. Due to the superior performance of x-vectors,

our simulation will be based on the x-vector configuration. The NL score is used in

all the following experiments.

3.3 Problem associated with non-Gaussianality

In the previous section, we have found that x-vectors are highly non-Gaussian,

particularly in terms of kurtosis of the within-class distributions. We perform a

simulation experiment to investigate the impact of a high kurtosis. We use the

Laplace distribution whose excessive kurtosis is 3. This is not as high as the x-vectors

showed, but at least higher than the value of a Gaussian. The experiment is based

on the configuration of the x-vectors derived from VoxCeleb (in the LDA space). We

sample 600 classes following the same between-class distribution as the x-vectors.
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Table 1 Statistics of x-vectors and i-vectors, and the corresponding synthesis data.

x-vector i-vector
True Data Synthesis Data True Data Synthesis Data

Within Class PC1 dir. STD 0.095 0.045 0.060 0.045
PC2 dir. STD 0.077 0.045 0.063 0.055
Avg PC dir. STD 0.084 0.045 0.055 0.055
PC1 shape STD 11.2 1.80 11.5 1.94
PC2 shape STD 6.83 1.82 7.95 1.95
Avg PC shape STD 5.53 1.85 5.48 1.98
PC Kurtosis 19.15 0.150 1.940 0.152
PC Skewness 0.837 0.040 0.370 0.041

Between Class PC Kurtosis 0.390 0.010 0.358 0.002
PC Skewness 0.065 0.001 0.043 0.001
EER% (STD) 2.77 (0.1) 0.0 (0.0) 3.22 (0.2) 0.003 (0.008)
IDR% (STD) 85.51(0.7) 100.0 (0.0) 75.08 (0.5) 100.0(0.0)

For each class, we sample one sample for enrollment and three samples for test, from

either a Gaussian or a Laplace distribution. In the NL scoring, we assume all the

data are generated from Gaussian, and use the within-class variance that is used

to generate the data. Each test repeats 500 times, and the averaged EER and IDR

are reported, plus their variations. The results with different within-class variances

are shown in Figure 3. It can be seen that the incorrect Laplace distribution indeed

detriments the performance, especially in terms of EER. With a high within-class

variance, the Laplace distribution seems hurt the IDR performance not much, which

may be attributed to the fact that the Laplace distribution is more concentrated

than the Gaussian. We conjecture that a larger kurtosis will lead to more severe

performance reduction.

Figure 3 Comparison of the EER/IDR results on data sampled from Gaussian and Laplace
distributions.

Researchers have noticed the problem associated with non-Gaussianality. Various

non-linear transforms have been proposed, for example the radial Gaussianization

(RG) [40] and the simple length normalization [23]. For x-vectors, involving Gaus-

sian constraints in the training objective of the x-vector extractor may improve

the Gaussianality [8, 36, 37]. Variational auto-encoders (VAE) and normalization

flows [58, 65, 69] were also employed to improve Gaussianlity of x-vectors. An-
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other line of research employs a non-Gaussian model, with the hope to handle

non-Gaussian data in practical situations [31] .

3.4 Problem associated with non-homogeneity

The non-homogeneity is caused by the variation of individual classes. The results

in Table 1 show that this variation is largely related to the shape rather than the

direction of the distributions of individual classes. We therefore focus on the impact

of the variation of within-class variances, i.e., variance’s variation.

We perform a simulation test, by imitating the between-class and (accumulated)

within-class variance (in the LDA space) of x-vectors derived from VoxCeleb. A

noise will be added to the variance of each individual class, to simulate the non-

homogeneity.

Specifically, we sample 600 classes according to the between-class distribution of

the x-vectors. For each class, we sample one sample for enrollment, and three sam-

ples for test. The variance of each class will be modified during the sampling by

adding a noise ξ, but the same within-class distribution is used when sampling the

enrollment and test data for that class. More specially, when sampling data for a

particular class, a random noise ξ is added to the STD of the within-class distri-

bution (1.0 in our test). Note that when the within-class variance is smaller than

0.1 after adding the noise, we will keep the variance to be 0.1. In our experiment,

we test the impact of different levels of non-homogeneity, by varying the STD val-

ue of the added noise from 0.1 to 3.0. Therefore, the final within-class variance is

max(0.1, 1.0 + ξ), where ξ ∼ N(0, ω) and ω changes from 0.1 to 3.0. For each ω, the

test runs 500 rounds and the mean and variation of the EER and IDR results are

reported, on the SV and SI tasks respectively.

Since adding noise to the within-class variance of individual classes will change the

accumulated within-class variance, the original configuration (within-class variance

= 1.0) is not correct for NL scoring. We generate 200 samples for each class with

exactly the same variance (after adding noise) of each class, and then compute the

accumulated within-class variance using these samples. This accumulated within-

class variance is used for computing the NL score of the non-homogeneous dataset.

Additionally, we also generate a homogeneous dataset, where all the classes are

generated using the same accumulated within-class variance used when sampling

the non-homogeneous dataset. This will be used as the homogeneous reference for

the comparative analysis.

The results are shown in Figure 4. It can be seen that the non-homogeneous

data generally achieve worse performance compared to the homogeneous data, in

terms of both EER and IDR. An exception is that when the noise STD is 3.0, the

IDR performance of the non-homogeneous data is better than the homogeneous

data. This is attributed to the fact that according to our sampling scheme, a large

portion of the within-class variances collapse to 0.1 when the non-homogeneous

level is high, leading to a subset of classes whose within-class distributions are not

only homogeneous but also compact. This is not a real-life situation. Note that the

compact data suffer from biased within-class distribution, hence a worse EER.

The research on non-homogenity is far from extensive. The central loss that im-

poses the same Gaussian constraint for individual classes may improve homogene-

ity [8, 36, 37]. Recently we presented a deep normalization approach [9] based on
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Figure 4 The EER and IDR results with homogeneous and non-homogeneous within-class
distributions. The x-axis is the STD ω of the noise ξ added to the STD of the within-class
distribution of each individual class.

normalization flows [19, 20, 32]. This approach intends to regulate individual classes

into a standard Gussian by a deep neural net, and has achieved promising results

with x-vectors.

3.5 Problem associated with training-deployment domain mismatch

Besides the break of the linear Gaussian assumption, NL also suffers from incorrect

configurations, i.e., using incorrect between-class and/or within-class covariances

when computing the NL score. In practice, this often happens when the NL pa-

rameters are estimated in one domain (training phase), but are used in another

domain (deployment phase). We will investigate the factors that mostly impact the

NL scoring under the training-deployment mismatch by simulation experiments.

3.5.1 Statistical analysis

To understand what has been changed from one domain to another, we compare

the distributional properties of the x-vectors derived from VoxCeleb and another

dataset, CNCeleb [21]. The two datasets are in different languages and with different

genres, so can represent two domains.

Firstly, we compute the between-class and within-class covariances of the two

datasets, shown in Figure 5 and Figure 6 respectively. Then we use VoxCeleb to

train an LDA, and apply it to transform data of both VoxCeleb and CNCeleb. Note

that LDA does not change the NL behavior, but can regularize the data to a simple

distribution, making the comparison of the two datasets easier.

The between-class and within-class covariances of VoxCeleb and CNCeleb after

the LDA transform are shown in Figure 7 and Figure 8 respectively. It can be seen

that the LDA trained on VoxCeleb can largely diagonalize the between-class and

within-class covariances of CNCeleb. This is a nice property and suggests that the

directions of the distribution of the class means (related to between-class covari-

ance) and the accumulated distribution of individual classes (related to within-class
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covariance) do not change significantly from VoxCeleb to CNCeleb. Note that in

Table 1, we have shown that the directional variance of individual classes is small.

Therefore, we conclude that the directions of both the between-class distribution

and the individual within-class distributions do not change much from VoxCeleb to

CNCeleb.

However, the diagonal elements of the between-class covariance do change signif-

icantly. Specifically, for VoxCeleb, most of the variance is distributed over the first

several dimensions; for CNCeleb, however, the distribution tends to be uniform. For

the within-class covariance, the diagonal elements remain equally distributed, but

the value of each element has changed significantly from VoxCeleb to CNCeleb (1.0

for VoxCeleb vs 3.9 for CNCeleb).

Figure 5 Between-class (left) and within-class (right) covariances of the x-vectors in VoxCeleb.

Figure 6 Between-class (left) and within-class (right) covariances of the x-vectors in CNCeleb.

More quantitative analysis are shown in Table 2, where we have shown the statis-

tics of the x-vectors transformed by two LDAs, trained on VoxCeleb and CNCeleb

respectively. For the within-class (WC) and between-class (BC) covariances in the

LDA space, we compute the mean/variance of the diagonal elements as well as

the proportion of the values of the diagonal elements (concentration factor). A key

observation is that the concentration factors of the between-class and within-class
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Figure 7 Between-class (left) and within-class (right) covariances of the x-vectors in VoxCeleb,
transformed by LDA trained on VoxCeleb.

Figure 8 Between-class (left) and within-class (right) covariances of the x-vectors in CNCeleb,
transformed by LDA trained on VoxCeleb.
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covariances are relatively large, by applying the LDA learned from either Vox-

Celeb and CNCeleb. It double confirms that the directions of the within-class and

between-class distributions do not change much from one domain to another.

Moreover, the variation of the diagonal elements of the within-class covariance

is relatively small for both datasets, though the mean of the diagonal elements is

different for different datasets. This indicates that the within-class distribution has

changed from one dataset to another, but the change can be simply compensated

by a global scale factor on all the dimensions. The between-class covariance shows

different properties. The variation of the diagonal elements is much higher on the

data where the LDA is trained, indicating that the between-class distribution has

been changed significantly from one dataset to another.

Table 2 Statistics of x-vectors in VoxCeleb and CNCeleb, after applying LDAs trained on each of
them.

VoxCeleb CNCeleb
LDA by VoxCeleb WC Mean 1.000 4.094

WC Var 0.000 0.138
WC Concentration 1.000 0.971
BC Mean 0.764 1.142
BC Var 11.22 2.870
BC Concentration 1.000 0.971

LDA by CNCeleb WC Mean 0.534 1.000
WC Var 0.019 0.000
WC Concentration 0.930 1.000
BC Mean 0.721 0.507
BC Var 0.722 1.103
BC Concentration 0.930 1.000

3.5.2 Simulation results

We perform a simulation experiment to test the degradation that the domain mis-

match may cause. Again, the simulation is based on the configuration of the x-

vectors derived from VoxCeleb, but the between-class and within-class variances

will be changed to smaller or larger when sampling the enrollment/test data. For a

better comparison, the within-class variance of the baseline (without domain mis-

match) is set to be 2.0. In each test, we sample 600 classes, and for each class, we

sample one sample for enrollment and three samples for test. We run each test for

500 rounds, and report the averaged EER and IDR, plus the variations on them.

The first experiment simulates the impact with incorrect between-class variances.

For that purpose, we define a distortion factor α, and multiply the original between-

class variances (on all dimension) by (1 +α) when sampling the class mean vectors.

When computing the NL score, the presumed between-class variances (those of

the true x-vectors) are used, although the true data are sampled from a changed

distribution. For comparison, we also compute the performance when the NL uses

the changed between-class variances, which represents the performance when the

domain mismatch is perfectly addressed (e.g., by retraining the NL parameters).

The results are shown in Figure 9. Comparing the difference between the red line

(with domain mismatch) and the blue line (without domain mismatch), we can see

if incorrect between-class variances are used, the NL performance is impacted, but

not much.

In the next experiment, we simulate the case with an incorrect within-class vari-

ance. We multiply the original with-class variance by (1 + α) when sampling the



Wang Page 23 of 33

Figure 9 Performance loss with between-class variance mismatch between the training and
deployment. The x-axis represents the distortion factor α on the between-class variances.

data of each class for both enrollment and test. In computing the NL, the presumed

within-class variance (that is 2.0 in our case) is used. Again, we compute the per-

formance when the NL uses the changed within-class variance, which represents the

performance when the domain mismatch is perfectly addressed.

The results are shown in Figure 10. Comparing the difference between the red line

(with domain mismatch) and the blue line (without domain mismatch), we can see

that when the within-class variance is incorrectly set, the performance is impacted,

in particular when the true within-class variance is large but we assume it is small.

The impact is more serious on the SV task compared to the SI task. This result

suggests that a larger within-covariance is a safe choice when designing a practical

system.

Figure 10 Performance loss with within-class variance mismatch between the training and
deployment. The x-axis represents the distortion factor α on the within-class variance.
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The final experiment simulates the shift on data, which is often observed when

speaker recognition systems migrate to a new channel. We simply add a value β to

all the dimensions of the sampled data, and then use the presumed NL parameters

to compute the scores. The results are shown in Figure 11, where we also report the

results without the shift. The results show that data shift impacts performance in

a very significant way, and seems much more severe compared to the change on the

between-class and within-class variances. The fatal impact of data shift has been

reported with experiments on real datasets, e.g., [2].

Figure 11 Performance loss with data shift between the training and deployment. The x-axis
represents the value shifted on all the dimensions.

3.5.3 Domain adaptation

There are numerous studies on domain adaptation with PLDA (equivalent to NL

based on a linear Gaussian model). The research can be categorized into three

themes. The first theme adapts the covariances (or equivalently the factor loading

matrices of PLDA) of the source domain to match the data in the target domain.

This could be supervised or unsupervised. The supervised approach uses class labels

in the target domain, and adapt the PLDA model following the Bayesian rule in

principle [24, 61]. The unsupervised approach employs various clustering methods

to generate pseudo classes, and then treat these pseudo classes as true speakers to

conduct supervised adaptation [25]. The second theme analyzes the variation related

to domains. This variation will be either removed from the data [1, 2, 30] or treated

as a new subspace in LDA or PLDA models [47]. The third theme tries to learn

a mapping function that transfers the data from the source domain to the target

domain [53], or transfers data from multiple domains to a common domain [63].

Essentially, all these methods try to build a suitable statistical model for data

in the target domain, by applying the knowledge of the source domain as much as

possible, in the form of either model or data.

3.6 Problem associated with enrollment-test condition mismatch

Another problem that may impact NL scoring in practice is the condition mismatch

between enrollment and test. For example, one may enroll in an office but wants to
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perform test on the street. We will use simulation to investigate the impact of this

enrollment-test condition mismatch.

Again, the simulation is based on the configuration of the x-vectors derived from

VoxCeleb. For a better comparison, the within-class variance of the baseline (with-

out any mismatch) is set to be 2.0. In each test, we sample 600 classes, and for each

class, we sample one sample for enrollment and three samples for test. We run each

test for 500 rounds, and report the averaged EER and IDR, plus the variations on

them.

3.6.1 Within-class variance mismatch

The simplest case is that the within-class variance changes during the test, but we

compute the NL score using the within-class variance of the enrollment data. The

results are shown in Figure 12, where the within-class variance of the test data

is modified by multiplying the default value (i.e., the within-class variance of the

enrollment data) by a scale factor 1 + α. We also report the performance using the

(new) within-class variance of the test data for the NL scoring. Note that this is

not a perfect solution as the new within-class variance matches the test data but

does not match the enrollment data.

It can be seen that on both the SV and SI tasks, a larger within-class variance for

the test data will lead to clear performance reduction, which is not surprising as a

larger variance introduces more uncertainty. For SV, when the variance of the test

data is larger than the enrollment variance, using the test variance (red curve) to

compute the NL score leads to better performance compared to using the variance

of the enrollment data. When the variance of the test data is smaller than that of

the enrollment data, however, using the variance of the enrollment data (blue curve)

seems slightly better. In other words, a larger within-class variance is preferred if

there is a mismatch between the enrollment data and the test data. However, neither

of these two choices is optimal: using the within-class variance of the enrollment data

is not accurate for computing the prediction probability p(xxx|µµµ) of the test data and

the normalization term p(xxx), while using the within-class variance of the test data is

not accurate for computing the posterior of the class means, i.e., p(µµµ|xxx1, ...xxxnk
). We

will present a condition transfer approach to solve this dilemma shortly. The new

approach obtains the best performance, as shown by the brown curve in Figure 12.

For the SI task, we find that using the within-class variance of the enrollment

data (blue curve) is better than using that of the test data (red curve). This is also

expected, as in the SI task, the important thing is to estimate the class means, for

which using the within-class variance of the enrollment data is theoretically correct.

Once the class means are well estimated, using any within-class variance for test

will lead to the same SI decision. In other words, the NL score is not impacted by

the within-class variance mismatch on the SI task.

3.6.2 Mean scale and between-class variance mismatch

Another possible enrollment-test mismatch is that all the class means are scaled

by a factor α when generating the test data, while the within-class variance does

not change. This scaling will lead to two problems: (1) mean mismatch: the class

means of the enrollment data do not match the class means of the test data, leading
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Figure 12 Performance loss with within-class variance mismatch between enrollment and test.
The x-axis represents the change on the within-class variance of the test data compared to the
enrollment data.

to incorrect likelihood pk(xxx); (2) between-class distribution mismatch: the between-

class variance of the test data is scaled in the same way as the class mean scaling. If

we use the original between-class variance, the normalization term p(xxx) of the NL

score will be inaccurate.

A simple compensation is to apply the same scale to the enrollment data. A

problem with this compensation is that the scaling will change the within-class

variance of the enrollment data. The ultimate effect will be the same as in the case

of within-class variance mismatch: it would be a dilemma to choose the within-

variance of the enrollment data or the test data.

Figure 13 shows the performance of five systems:

� Red curve: Scale the class means of the test data, and use the between-class

and within-class variances of the enrollment data when computing the NL

score. This is the result without any compensation.

� Blue curve: Scale the enrollment data and the class means of the test data

in the same way, and use the between-class and within-class variances of the

original enrollment data when computing the NL score. Since the enrollment

data is scaled, the mean mismatch problem is solved, however the between-

class distribution mismatch remains.

� Yellow curve: Scale the enrollment data and the class means of the test da-

ta in the same, and use the between-class variance of the scaled enrollment

data (that is correct for both enrollment and test) and the within-class vari-

ance of the original enrollment data (that is correct for test but incorrect for

enrollment) when computing the NL score. This approach solves the mean

mismatch and between-class distribution mismatch, but the within-class vari-

ance is incorrect for enrollment.

� Purple curve: Scale the enrollment data and the class means of the test data in

the same way, and use the between-class variance of the scaled enrollment data

(that is correct for both enrollment and test) and the within-class variance of
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the scaled enrollment data (that is correct for enrollment but incorrect for test)

when computing the NL score. This approach solves the mean mismatch and

between-class distribution mismatch, but the within-class variance is incorrect

for test.

� Brown curve: Apply condition transfer that will be presented shortly.

From Figure 13, it can be seen that scaling the class means of the test data

caused serious performance reduction, especially when the scale is large. Scaling

the enrollment data to match the test data seems can mitigate this problem to

a large extent. The impact of using the incorrect between-class and within-class

distributions is not very substantial, indicating that mean mismatch is more serious

compared to distribution mismatch in NL scoring. Finally, the condition transfer

approach obtains the best performance, by correcting both the mean mismatch and

the distribution mismatch.

Figure 13 Performance loss with the class mean scale mismatch between enrollment and test.
The x-axis represents the scale factor α.

3.6.3 Mean shift

In the third experiment, we shift the class means by β on each dimension when

sampling the test data. This mean shift causes two problems for NL scoring: (1)

mean mismatch: the class means of the enrollment data do not match the class

means of the test data, leading to incorrect likelihood pk(xxx|µµµ), thus incorrect pk(xxx);

(2) between-class distribution shift : the between-class distribution of the test data

is shifted in the same way as the mean shift, which leads to incorrect normalization

p(xxx).

A simple compensation is to shift the enrollment data in the same way as the test

data. After the shift, the mean mismatch problem is mitigated, however the NL still

uses the between-class distribution of the original enrollment data. This is essentially

the data shift scenario in the domain mismatch experiment. Another compensation

is to compute the posterior of the class mean p(µµµ|xxx) first, and then shift the mean

of the posterior in the same way as the test data. By this way, the mean mismatch
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is solved and the likelihood pk(xxx) is correct, however the normalization p(xxx) is

incorrect due to the shifted between-class distribution of the test data.

We report the results of four tests in Figure 14:

� Red curve: Shift the test data only. This is the case with no compensation.

� Blue curve: Shift the enrollment and test data in the same way. This is the

data shift scenario in the domain mismatch experiment.

� Green curve: Shift the test data, and then shift the mean of the posterior

p(µµµ|xxx). It fully solves the mean mismatch problem, however the normalization

p(xxx) is incorrect due to the shifted between-class distribution.

� Brown curve: No data shift.

Figure 14 Performance loss with the class mean shift between enrollment and test. The x-axis
represents the value of mean shift. Note that the green curve is overlapped by the brown curve in
the IDR plot.

The results shown in Figure 14 demonstrate that the mean shift on test data tends

to cause significant performance degradation (red curve vs brown curve). This loss

is comparable or even worse compared to the domain mismatch case (red curve vs

blue curve). If we remove the mean mismatch but uses the incorrect normalization

(green curve), the IDR performance recovers perfectly but the EER results become

worse. The good performance on IDR is expected as the normalization term does

not impact decisions of the SI task. The bad performance on EER demonstrates

that an incorrect normalization may cause fatal performance loss on the SV task.

An interesting observation is that for the EER results, removing the mean mismatch

makes the performance even worse compared to doing nothing (green curve vs. red

curve). This suggests that the errors caused by mean mismatch and between-class

distribution shift are in opposite directions.

3.7 Condition transfer

We present a simple condition transfer approach based on the NL scoring, which is

optimal under the linear Gaussian assumption. For simplicity, we will assume that

the data have been shifted appropriately, so that the mean-shift problem does not

exist. Denote the parameters of the NL models suitable for the enrollment and test
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data by {εεε, σ} and {ε̂εε, σ̂σσ} respectively. Note that we have allowed a non-isotropic

within-class covariance Iσ̂σσ2 for the test data. Given enrollment samples xxxk1 , ...xxx
k
nk

of class k, the posterior of its class mean will be computed using the between-class

and within-class variances of the enrollment data:

p(µµµk|xxxk1 , ...xxxknk
) = N(µµµk;

nkεεε
2

nkεεε2 + σ2
x̄xxk, I

εεε2σ2

nkεεε2 + σ2
). (40)

Since there is no data shift, this posterior can be readily used to estimate the

likelihood of the test sample, using the within-class variance σ̂σσ of the test data:

pk(xxx) = N(xxx;
nkεεε

2

nkεεε2 + σ2
x̄xxk, I(σ̂σσ

2 +
εεε2σ2

nkεεε2 + σ2
)). (41)

Augmented by the normalization term computed using the between-class and

within-class variances of the test data, the NL score will have the following form:

logNL(xxx|k) ∝ −|| xxx− µ̃µµk√
σ̂σσ2 + εεε2σ2

nkεεε2+σ2

||2 + || xxx

ε̂εε2 + σ̂σσ2 ||
2, (42)

where

µ̃µµk =
nkεεε

2

nkεεε2 + σ2
x̄xxk. (43)

The condition transfer approach described above can be easily extended to handel

more complex condition mismatch, which will be left for future work. Note that we

have shown the performance of this method in Fig. 12 and Fig. 13. In both cases,

it provides the best (actually optimal) performance.

4 Discussion
The NL formulation plays a central role in our simulation study. From the perspec-

tive of NL scoring, any performance loss can be attributed to data-model mismatch

on the three components of the NL scoring: the enrollment model p(µµµ|xxx1, ...,xxxnk
),

the prediction model p(xxx|µµµ), and the normalization model p(xxx). The mismatch could

be: (1) mismatch on distribution type (e.g., Gaussian assumed but Laplacian in re-

ality); (2) mismatch on the mean (mean mismatch); (3) mismatch on the covariance

(covariance mismatch). This analytical view provides a powerful and necessary tool

for our simulation study. By this tool, we can analyze how a particular imperfection

causes performance reduction, and design suitable algorithms to compensate for the

impact, e.g., the conditional transfer algorithm.

The simulation results show that for a practical speaker recognition system, mean

mismatch is the most risky. For example, in the data shift scenario of the domain

mismatch experiment, the mean of the between-class distribution does not match

the data, causing between-class mean mismatch; in the mean shift scenario of the

enrollment-test condition mismatch experiment, the means of the within-class dis-

tributions of individual classes do not match the data, causing within-class mean
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mismatch. The performance reduction on these two scenarios is much more signifi-

cant compared to on other scenarios.

Although our work focuses on the linear Gaussian NL, the NL formulation is

general and can be easily extended by using nonlinear and non-Gaussian models, so

that it deal with more complex data. Recently, we provide such an extension [38],

by applying the invariance property of the NL score under invertible transforms, as

discussed in Section 2.3. Specifically, we learn an invertible transform that maps the

original data to a latent space where the data can be modeled by a linear Gaussian.

According to the equivalence of the NL score in the original and the transformed

space, this transform allows us using a linear Gaussian NL model to score data

with a complex distribution. This is essentially a nonlinear extension of the PLDA

model, which we call neural discriminant analysis (NDA). In our previous study,

the NDA model produces very promising results [38].

The MBR optimum of the NL scoring may encourage more research on the speaker

embedding approach. Since we have known that the NL score is MBR optimal, its

performance will be ensured if the distribution of the speaker vectors meet the

assumption of the model. This performance ensurance represents a clear advantage

of the embedding approach compared to the so-called end-to-end approach [12,

27, 68]. Moreover, since the NL score is optimal if and only if the speaker vectors

follow the assumed generative model, more research is encouraged on normalizing

the speaker vectors, rather than pursuing other complicated scoring methods (e.g.,

discriminative PLDA [7]) or score calibration [15, 59]. Our recently work shows that

speaker vector normalization is highly promising [9].

Finally, the main purpose of the paper is a full understanding for the NL score

by simulation, so we have refrained from presenting any EER/IDR results on real

SRE systems (large-scale experiments for the NL score with real data have been

presented by other papers, e.g., [38]). We found that the simulation study is very

useful and offers a lower bound and an upper bound for a potential technique. For

the lower bound, it gives a clear justification that a technique does work if the

presumed condition is matched, and so what we should do is to meet the condition.

For the upper bound, it tells the maximum that a technique can achieve if the

presumed condition is perfectly matched, so we should not intend to seek for more

in real applications.

5 Conclusions
We present an analysis on the optimal score for speaker recognition based on the

MAP principle and the linear Gaussian assumption. The analysis shows that the

normalized likelihood (NL) is optimal for both identification and verification tasks

in the sense of minimum Bayes risk. We also show that the NL score based on the

linear Gaussian model is equivalent to the popular PLDA LR. The cosine score and

Euclidean score can be regarded as two approximations of the optimal NL score.

Comprehensive simulation experiments were conducted to study the behavior of the

NL score, especially at the operation point of a true speaker recognition system. The

major knowledge we obtained from the simulation study is that the NL performance

may be seriously reduced by real-life imperfections, including the non-Gaussianality

and non-homogeneity of the data, inaccurate estimation of the between-class and
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within-class variances, and potential mismatch between enrollment and test con-

ditions. Among all the detrimental factors, data shift caused the most significant

performance reduction. We also proposed a condition transfer approach that can

compensate for the enrollment-test mismatch.
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