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Abstract. Large-scale deep neural models, e.g., deep neural networks (DNN)
and recurrent neural networks (RNN), have demonstrated significant success in
solving various challenging tasks of speech and language processing (SLP), in-
cluding speech recognition, speech synthesis, document classification and ques-
tion answering. This growing impact corroborates the neurobiological evidence
concerning the presence of layer-wise deep processing in the human brain. On
the other hand, sparse coding representation has also gained similar success in
SLP, particularly in signal processing, demonstrating sparsity as another impor-
tant neurobiological characteristic. Recently, research in these two directions is
leading to increasing cross-fertlisation of ideas, thus a unified Sparse Deep or
Deep Sparse learning framework warrants much attention. This paper aims to
provide an overview of growing interest in this unified framework, and also out-
lines future research possibilities in this multi-disciplinary area.

Keywords: Deep learning, sparse coding, speech processing, language process-
ing

1 Introduction

How the human brain processes information so effectively and efficiently is a long-
standing mystery. Although still far from a full understanding, physiological studies
seem to support two hypotheses: a sparse coding scheme that can represent information
succinctly, redundantly and robustly, and a layer-wise hierarchical processing pipeline,
gradually forming high-level abstraction with clear and rich semantic meaning [?,?].
This section summarizes findings from research on mammal neural systems, relating
to sparse and hierarchical characteristics, and will then review the machine learning
research inspired by each. Finally we will discuss the concept of combining these two
characteristics.

1.1 Sparsity and hierarchy in the brain

The sparse information representation in the human brain has been recognized by re-
searchers for a long time [?,?,?]. By scrutinizing cellular recordings physiologists found
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that neurons represent external stimuli in a rather sparse way. Specifically, many stim-
uli may activate the same neuron, and each stimulus is represented by only a few neu-
rons [?]. This suggests a sparse coding scheme in our brain, where each stimulus is
represented by a distribution of the activity it triggers over the neurons, and the number
of activated neurons is small. In other words, stimuli are represented by sparse codes in
our brain.

The layer-wised hierarchical structure, or the deep architecture, is another basic
assumption for the neural system since early research on connectionist models [?]. The
key advantage of this architecture is that high-level abstraction can be learned layer-
by-layer. The high-level abstraction is assumed to be a key ingredient in perception
and cognition [?]. Interestingly, the mammal brain was found to be organized in a deep
architecture [?], where a given input is processed at multiple levels, and each level
corresponds to a different area of cortex.

1.2 Sparsity and hierarchy in machine learning

Both sparse representations and hierarchical architectures have attracted much atten-
tion in machine learning and artificial intelligence (AI) research. On the sparse coding
part, researchers usually cast the sparse coding problem to a constrained optimization
problem for over-complete linear equations, and developed numerous optimization ap-
proaches to solve the problem.

On the hierarchical architecture part, researchers in machine learning have demon-
strated the brilliant success of deep learning methods over the past decade. A key point
of deep learning is the layer-wised information processing within the hierarchical archi-
tecture [?], for example the deep neural network (DNN) and its convolutional and recur-
rent variants, i.e., convolutional neural networks (CNN) and recurrent neural networks
(RNN). Deep learning has delivered remarkable performance on numerous machine
learning tasks, including speech processing [?,?,?,?,?] and language processing [?]. A
high-level summary was recently published in Nature [?], and more details can be found
in the review papers written by Bengio [?,?].

1.3 Deep sparse or sparse deep models?

Both sparsity and hierarchy are important properties of the brain and play fundamental
roles in perception, cognition and other functions that comprise human intelligence. An
interesting question is: How these two properties are integrated together to support these
fundamental functions? A simple picture is that sparse coding provides efficient and ro-
bust codes, while the hierarchical architecture offers a constrained structure where the
sparse codes are processed. Although not fully confirmed by physiological studies, ma-
chine learning researchers are investigating in this direction and have achieved some
promising results, e.g., [?,?,?,?,?]. In this paper, we give a quick review for the re-
cent development of deep and sparse models, and describe some applications of this
new technique in speech and language processing. Note that the sparse models we are
concerned with are not limited to sparse coding, but any models with sparsity regular-
ization. Additionally, we distinguish deep sparse models and sparse deep models: the
former refers to sparse models that are stacked to form a deep structure, while the later
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refers to deep models (usually neural networks) that involve sparsity regularization. Our
review covers both categories, but sparse deep models are clearly dominant at present.

The paper is organized as follows: Section 2 describes sparse deep models, and
Section 3 describes deep sparse models. Their application in speech and language pro-
cessing is presented in Section 4, and some ideas for future research are presented in
Section 5.

2 Sparse deep models

Sparse deep models refer to deep models (e.g., DNNs) that involve certain sparsity
regularization. This regularization can be applied to various components of the deep
model, e.g., units, weights, or gradients. It is often in the form of sparsity-oriented
norms (e.g., `-0 or `-1), as well as special activation functions (e.g., rectifier) and some
pre-training procedure.

2.1 Unit sparsity by norms

The deep model with unit sparsity is closely related to sparse coding, and can be re-
garded as a deep and non-linear extension to the conversional sparse coding model. The
most straightforward way to produce sparse units is to impose certain sparse-oriented
norms on the hidden units and add the norms into the objective function. Although `-0 is
the most ideal, l-1 is used more often due to its smoothness. For example, Olshausen et
al. [?] used `-1 to generate sparse units to model activities of the retina in mammals [?].
Another commonly used sparse-oriented regularization is the `-1/`-2 norm, which often
leads to group sparsity [?,?].

An early work from Ranzato and colleagues [?] employed a sparse regularization
in the form

∑M
i log(1 + z2i ) on the hidden units when training deep encoder-decoding

models, where zi is the nonlinear-transformed activation of the i-th hidden unit, and
M is the number of hidden units. The main purpose of this sparsity regularization was
to limit the input space where the energy surface has a low value, which is a cheap
approximation to the partition function and leads to an efficient training algorithm for
deep models.

Another work presented by Lee et al. [?] imposed sparsity regularization when train-
ing RBMs, where the sparsity regularization was defined as follows:

n∑
j=1

|p− 1

m

m∑
l=1

E[h(l)
j |v

(l)]|2

where v(l) represents the observed variables of the l-th example, h(l)
j denotes the j-th

hidden variable of the l-th example. The authors found that the sparse RBM components
can be stacked to form a sparse deep belief net (DBN). Particularly, they found a two-
layer sparse DBN can model the cell receptive fields of the visual area V1 and V2.
Note that similar sparsity regularization was also employed in the discriminative or
semi-supervised RBM framework, as proposed by Larochelle et al. [?].
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Luo et al. [?] proposed to use the `1/`2 mix norm to yield sparse units in RBMs.
This norm is formulated as follows:∑

k

√ ∑
m∈Gk

P (hm = 1|x(l))2

where Gk is the k-th group of the hidden units. It can be seen that the regularization
on the groups is `-1, while the regularization on the hidden units (within a particular
group) is `-2. This leads to group-level sparsity, while keeping the firing probability of
the units within one group equally small. The authors stacked the group-level sparse
RMBs to construct sparse deep Boltzmann machines (DBMs). Experiments on letter
recognition tasks with the MNIST and OCR databases confirmed that the sparse DBM
can learn reasonable hierarchical features and provide good pre-training for DNNs. The
`-1/`-2 norm was also used by Li et al. [?] to construct deep stacking networks (DSN).
Experiments conducted on image classification confirmed the efficiency of their model.

The popular `-1 regularization is equal to a Laplace prior distribution over the hid-
den units. Another sparsity-oriented prior is the spike-and-slab prior recently proposed
by Goodfellow et al. [?]. Experiments on image pattern learning and classification tasks
demonstrated that this prior can lead to better sparse representations.

2.2 Unit sparsity by activation functions

The second approach to deriving sparse units is through special activation functions.
Perhaps the most popular sparsity-deriving activation function is the rectifier function
g(x) = max(0, x), which suppresses the negative part of the activation to zero. In-
terestingly, this function was found to resemble the true activation function of human
neurons, according to the leaky integrate-and-fire (LIF) model [?]. Xaiver et al. [?] pre-
sented an empirical study for deep neural networks with the rectifier activation function
and found several merits associated with this function, particularly that the training is
much easier, as the segment linearity of this activation avoids the notorious gradient
vanishing and explosion problem. They found that with the rectifier activation, compet-
itive performance can be obtained even without pre-training.

Poultney et al. [?] studied another sparse-oriented activation function called ‘spar-
sifying logistic’. They found that with this type of activation function, simple and com-
plex cell receptive fields can be derived, leading to a topographic layout of the filters,
which is reminiscent of the topographic maps found in area V1 of the visual cortex.

Another sparse-oriented activation function called ‘win-take-all’ was proposed by
Makhzan et al. [?]. This function applies to the convolutional layers of a CNN model
and retains the largest activation while setting others to zero. This approach was tested
on the MNIST image classification task and obtained competitive performance.

2.3 Unit sparsity by pre-training

Recently, Li et al. [?] presented an interesting analysis and showed that various pre-
training methods lead to sparse units, where the sparsity is measured by the `-1 norm.
They identified a sufficient condition and demonstrated theoretically and empirically
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that if the condition is satisfied, some popular pre-training approaches lead to sparse
hidden units, including the pre-training methods based on denoising auto-encoders
(DAEs) and RMBs. They also argued that pre-training improves DNN training because
of the sparsenes. This argument seems to explain why pre-training is less important for
DNNs with the rectifier activation function: the units have been sufficiently sparse al-
ready with this type of activation function so the sparsity contributed by the pre-training
is less useful.

2.4 Weight sparsity and pruning

The sparsity regularization can also be applied to weights. This is not directly related to
sparse coding, but it does help to learn prominent patterns, and can significantly reduce
redundant parameters. This reduction of parameters leads to improved efficiency in
terms of both statistics and computation.

Weight decay [?] and the variants (e.g., [?]) employ `-2 norm to encourage weights
of small values, while a true sparsity-oriented regularization is based on the `-1 norm [?].
Connection pruning is a more efficient process for obtaining weight sparsity. The sim-
plest pruning approach is to remove connections with small weights [?]; a more so-
phisticated approach considers the impact of the removal on the cost function, e.g., the
optimal brain damage (OBD) method [?,?]. The primary advantage of the pruning ap-
proach is that it can yield very compact models. For example, it was reported by Liu et
al. [?] that 90% of connections can be removed with a 1.5% frame accuracy reduction
in a speech recognition task. A particular problem with the compact model is that on
modern CPUs the operations on sparse matrices are generally much slower than the
operations on dense matrices. Recently, Liu et al. [?] presented an interesting approach
that can speed up sparse matrix multiplication.

2.5 Gradient sparsity

Another interesting approach related to sparse deep neural models is the contractive
auto-encoder (CAE) proposed by Rifai et al. [?]. In this, the Frobenius norm of the
Jacobian of the hidden units is used as a regularization. This ‘contraction’ penalty is
imposed on the gradients and ensures robustness against minor change in the input. This
is related to sparse coding, since if the activation function is sigmoid, the contraction
penalty tends to drive the hidden unit activations to either zero or one where the gradient
is zero.

Alain et al. [?] showed that the DAE model [?] is closely related to the CAE model,
except that the contractive penalty for DAE is imposed on the Jacobian of the output
units. Arpit et al. [?] presented a further study and showed that under certain conditions,
deep neural models encourage sparse representations. Some popular models including
DAE and CAE satisfy these conditions and therefore tend to produce sparse represen-
tations.
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3 Deep sparse models

The sparse deep models described in the previous section focus on deep neural mod-
els with sparse regularization. In contrast, deep sparse models focus on sparse models,
whilst borrowing the idea of hierarchical processing from deep learning and construct-
ing multi-level sparse models.

For example, Yu et al. [?] presented a two-level sparse coding approach. In the first
layer, sparse codes are derived from raw bits of an input image. Covariance matrcies of
the sparse codes are then computed for neighbouring patches. The second-level sparse
codes are then derived from the diagonal vectors of the covariance matrices. These
set-level codes are used as features for image classification. By using two-level sparse
coding, features are extracted in a hierarchical way, leading to additional abstraction
that can represent features of a larger scope.

He et al. [?] presented a similar multi-layer sparse coding framework. An innovation
is that each sparse coding component is followed by a dense code conversion layer. This
framework ensures that higher-level features cover larger scopes of the input than lower-
level features, and the neighboring patches are placed close to each other in the dense
code space. The entire framework is purely supervised. After the feature learning, a
classifier is trained to conduct object recognition.

An interesting work presented by Kavukcuoglu [?,?] employs neural models to
learn sparse codes. This predicted sparse decomposition (PSD) method is much more
efficient at run-time and inherits most of the advantages of the conventional sparse cod-
ing method.

4 Application in speech and language processing

Both sparse coding and deep learning have been widely employed in speech and lan-
guage processing, however thorough investigation of deep sparse or sparse deep models
is still limited. We start by summarizing the work in sparse coding and deep learning,
and then present some recent studies which combine these two models.

Sparse coding Sparse coding has been widely employed in a wide range of speech
processing tasks, including but not limited to speech coding [?,?], speech enhance-
ment [?,?,?], source separation [?,?], music coding, classification and retrieval [?,?,?],
speech recognition [?,?,?,?,?], overlap detection [?], voice activity detection [?], and
sound localization [?].

Sparse coding is also applied to language processing. For example, Zhu et al. [?]
presented a sparse topic model by introducing `-1 regularization on both the document
and word representations. This was later extended to an online version [?]. Note that
sparse topic models can be extended to a hierarchical structure [?]. The probabilistic
formulation was later changed to a non-probabilistic formulation that can effectively
control the sparsity [?]. The idea of sparse topic models was also presented in [?], where
`-1 regularization was introduced to the conventional latent semantic analysis (LSA).
Recently, Liu et al. [?] presented a document summary approach using two-level sparse
representation.
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The application of sparse coding in language processing is far from extensive, when
compared to speech processing. A particular reason is that the vanilla sparse coding
approach assumes a Gaussian residual, whereas language processing often uses dis-
crete representations that are generally not Gaussian distributed. To solve this problem,
Lee [?] extended the conventional Gaussian sparse coding to an exponential family
sparse coding. This approach was successfully applied to text classification.

Deep learning Deep learning has obtained exceptional results in both speech and lan-
guage processing, including speech recognition [?,?], speech synthesis [?], speech en-
hancement [?,?], speech separation [?], language modeling [?], semantic parsing [?],
paraphrase detection [?], machine translation [?], and sentiment prediction [?]. There
are numerous papers on deep learning methods for speech and language processing.
Readers are referred to the recent book from Goodfellow et al. [?] and the deep learn-
ing website http://deeplearning.net.

Deep and parse models Just very recently, deep sparse or sparse deep models were
employed in speech and language processing. For example, Sivaram et al. [?] proposed
a regularization in the form log(1 + v2) in DNN model training, where v is the acti-
vation of the unit to regularize. This regularization, is equivalent to a student-t prior on
v, was found to deliver better performance in phone recognition [?]. Yogatam [?] in-
troduced a hierarchical group sparse regularization to derive sparse word vectors. They
reported better performance with the group-sparsity in a text classification task. Sun et
al. [?] proposed an `-1 regularized word embedding algorithm and found that sparsity
leads to better performance on a bunch of analogy tasks, and the resulting embedding is
more expressive and interpretable. Vyas et al. [?] recently presented a sparse bilingual
word representation approach for cross-lingual lexical entailment, i.e., detect whether
the meaning of a word in one language can be inferred from the meaning of a word in
another language.

It should be emphasized that the studies mentioned are just a part of the contempo-
rary work towards deep sparse and sparse deep learning. There may be some interesting
research missed in our review, but generally the work in this direction is rather limited.

5 Conclusions and future directions

We gave a quick review of sparse and deep learning methods in machine learning. Both
approaches can find strong physiological support and have demonstrated success in a
wide range of machine learning tasks. It has been commonly adopted that sparse models
can learn prominent patterns and are highly robust due to the redundancy in the code.
Deep learning, on the other hand, has an advantage as it can learn high-level abstraction,
which is more invariant and transferable across conditions and domains.

A particulary interesting question is how sparsity and hierarchy interact and comple-
ment each other to support the complex functions of human brains. It seems natural to
believe that sparse coding plays the role of robust information representation, while the
hierarchical structure plays the role of knowledge deduction and induction. However,
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how the two ingredients are integrated in a biological neural system and the mecha-
nism driving hierarchical sparse information processing is far from known and requires
further investigation.

Although the physiological mechanism remains unclear for machine learning re-
searchers, pioneering work has been conducted in several groups, with the aim to lever-
age the respective advantages of deep and sparse models, as discussed in our paper.
Interestingly, these studies demonstrate that both sparse deep models and deep sparse
models are highly promising: in the former case, sparse regularizations encourage more
plausible local patterns, while in the later case, deep structures yield large-scope repre-
sentations.

It seems that most of the successful deep and sparse research resides in the unsu-
pervised learning paradigm, e.g., with (stacked) RBMs or DAEs. Investigations into
how the patterns can be learned with explicit supervision seem interesting and can be
demonstrated in a semi-supervised framework, as shown in Larochelle’s work [?]. Ad-
ditionally, it is reasonable to hypothesize that different types of sparse regularization
may contribute to the neural system in different but collaborative ways. For example,
it is possible that the code sparsity and weight sparsity collaborate together to deter-
mine the characteristics of the human neural system. More investigation should be con-
ducted on the impact of multiple sparse regularizations. Another interesting question
is how sparsity functions differently at different layers in a deep structure. It is known
that in deep neural models, the responses at high-level layers are more sparse than at
low-level layers. This sparsity is mainly attributed to the layer-wised information dis-
entanglement [?]. It is then interesting to know if sparse coding still contributes to form
representations at high levels. If the answer is ‘yes’, the challenge is to understand how
the sparsity is derived from the two forces, i.e., sparse-oriented regularization and the
nature of high-level abstraction.

We also reviewed some papers on speech and language processing that employ deep
sparse or sparse deep models. For speech processing, there are numerous studies on both
sparse and deep models, however we didn’t find much literature combining the two
techniques. It is common practice for speech researchers to try `-1 or `-2 regularization
when training deep neural models, but little work treats sparse representations seriously
in the deep architecture. For language processing, neither sparse nor deep models were
widely studied until very recently. One reason is that traditional language processing
methods focus on symbolic representations, e.g., words, phrases, tags. These represen-
tations are discrete and are not amiable to both sparse and deep models. Thanks to
the embedding technique, continuous representations (e.g., word vectors) have become
popular, which in turn have motivated the investigation and application of deep and
sparse learning in language processing, as already discussed in the paper.

We expect that more interesting findings will be obtained for speech and language
processing, through novel combinations of sparse and deep models. In the past, re-
searchers hoped to learn acoustic or semantic patterns by either sparse coding or deep
learning, and both directions seem fruitful, e.g., [?,?]. However, knowledge is still lim-
ited on how the patterns learned by the two very different methods differ from each
other and which approach delivers more ‘plausible’ patterns. Importantly, can we com-
bine the two approaches together to better learn patterns? If we accept the argument
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that the two mechanisms function in a collaborative way in our brain, then we posit
exploiting them in a unified framework to decipher the complex information in human
speech and language, as our brain seamlessly does every day.
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17. Földiák, P., Young, M.P.: Sparse coding in the primate cortex. The handbook of brain theory
and neural networks 1, 1064–1068 (1995)

18. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings
of the 14th international conference on Artificial Intelligence and Statistics (AISTATS). pp.
315–323 (2011)

19. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning (2016), http://www.
deeplearningbook.org, book in preparation for MIT Press

20. Goodfellow, I., Courville, A., Bengio, Y.: Large-scale feature learning with spike-and-slab
sparse coding. In: International Conference on Machine Learning. pp. 1439–1446 (2012)

21. He, Y., Kavukcuoglu, K., Wang, Y., Szlam, A., Qi, Y.: Unsupervised feature learning by deep
sparse coding. arXiv preprint arXiv:1312.5783 (2013)

22. Huang, P., Kim, M., Hasegawajohnson, M., Smaragdis, P.: Deep learning for monaural
speech separation. In: ICASSP 2014 (2014)

23. Jaitly, N.: Exploring Deep Learning Methods for Discovering Features in Speech Signals.
Ph.D. thesis, University of Toronto (2014)

24. Kavukcuoglu, K., Fergus, R., LeCun, Y., et al.: Learning invariant features through topo-
graphic filter maps. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. pp. 1605–1612. IEEE (2009)

25. Kavukcuoglu, K., Ranzato, M., LeCun, Y.: Fast inference in sparse coding algorithms with
applications to object recognition. arXiv preprint arXiv:1010.3467 (2010)

26. Klein, D.J., König, P., Körding, K.P.: Sparse spectrotemporal coding of sounds. EURASIP
Journal on Advances in Signal Processing 2003(7), 1–9 (2003)

27. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Advances in
Neural Information Processing Systems (NIPS). vol. 4, pp. 950–957 (1992)

28. Larochelle, H., Bengio, Y.: Classification using discriminative restricted boltzmann ma-
chines. In: Proceedings of the 25th international conference on Machine learning. pp. 536–
543. ACM (2008)

29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
30. Lee, H.: Unsupervised feature learning via sparse hierarchical representations. Ph.D. thesis,

STANFORD UNIVERSITY (2010)
31. Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area v2. In:

Advances in neural information processing systems. pp. 873–880 (2008)
32. Li, J., Zhang, T., Luo, W., Yang, J., Yuan, X.T., Zhang, J.: Sparseness analysis in the pretrain-

ing of deep neural networks. IEEE Transactions on Neural Networks and Learning Systems
PP(99), 1–14 (2016)

33. Li, J., Chang, H., Yang, J.: Sparse deep stacking network for image classification. arXiv
preprint arXiv:1501.00777 (2015)

34. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional neural net-
works. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. pp. 806–814 (2015)

35. Liu, C., Zhang, Z., Wang, D.: Pruning deep neural networks by optimal brain damage. In:
Interspeech’14 (2014)

36. Liu, H., Yu, H., Deng, Z.: Multi-document summarization based on two-level sparse repre-
sentation model. In: National Conference on Artificial Intelligence (2015)

37. Luo, H., Shen, R., Niu, C.: Sparse group restricted boltzmann machines. arXiv preprint
arXiv:1008.4988 (2010)



11

38. Luo, Y., Bao, G., Xu, Y., Ye, Z.: Supervised monaural speech enhancement using comple-
mentary joint sparse representations. IEEE Signal Processing Letters 23(2), 237–241 (2016)

39. Makhzani, A., Frey, B.: A winner-take-all method for training sparse convolutional autoen-
coders. In: NIPS Deep Learning Workshop (2014)

40. Martin, J.H., Jurafsky, D.: Speech and language processing. International Edition (2000)
41. Mikolov, T.: Statistical Language Models Based on Neural Networks. Ph.D. thesis, Brno

University of Technology (2012)
42. Nam, J., Herrera, J., Slaney, M., Smith, J.O.: Learning sparse feature representations for

music annotation and retrieval. In: ISMIR. pp. 565–570 (2012)
43. Northoff, G.: Unlocking the Brain, Volume 1: Coding. Oxford (2014)
44. Ogrady, P.D., Pearlmutter, B.A.: Discovering speech phones using convolutive non-negative

matrix factorisation with a sparseness constraint. Neurocomputing 72(1), 88–101 (2008)
45. O’Grady, P.D., Pearlmutter, B.A., Rickard, S.T.: Survey of sparse and non-sparse methods in

source separation. International Journal of Imaging Systems and Technology 15(1), 18–33
(2005)

46. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy em-
ployed by v1? Vision Research 37(23), 3311–3325 (1997)

47. Plumbley, M.D., Blumensath, T., Daudet, L., Gribonval, R., Davies, M.E.: Sparse represen-
tations in audio and music: from coding to source separation. Proceedings of the IEEE 98(6),
995–1005 (2010)

48. Poultney, C., Chopra, S., Cun, Y.L., et al.: Efficient learning of sparse representations with an
energy-based model. In: Advances in neural information processing systems. pp. 1137–1144
(2006)

49. aurelio Ranzato, M., lan Boureau, Y., Cun, Y.L.: Sparse feature learning for
deep belief networks. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T.
(eds.) Advances in Neural Information Processing Systems 20, pp. 1185–
1192. Curran Associates, Inc. (2008), http://papers.nips.cc/paper/
3363-sparse-feature-learning-for-deep-belief-networks.pdf

50. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Ex-
plicit invariance during feature extraction. In: International Conference on Machine Learn-
ing, 2011 (2011)

51. Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., Poggio, T.: A quantitative theory
of immediate visual recognition. Progress in brain research 165, 33–56 (2007)

52. Setiono, R.: A penalty function approach for prunning feedforward neural networks. Neural
computation 9(1), 185–204 (1994)

53. Sigg, C.D., Dikk, T., Buhmann, J.M.: Speech enhancement with sparse coding in learned
dictionaries. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing. pp. 4758–4761. IEEE (2010)

54. Sivaram, G.S.V.S., Nemala, S.K., Elhilali, M., Tran, T.D., Hermansky, H.: Sparse coding
for speech recognition. In: 2010 IEEE International Conference on Acoustics, Speech and
Signal Processing. pp. 4346–4349 (March 2010)

55. Sivaram, G.S., Hermansky, H.: Multilayer perceptron with sparse hidden outputs for
phoneme recognition. In: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on. pp. 5336–5339. IEEE (2011)

56. Socher, R., Huang, E.H., Pennington, J., Ng, A.Y., Manning, C.D.: Dynamic pooling and
unfolding recursive autoencoders for paraphrase detection. Advances in Neural Information
Processing Systems 24, 801–809 (2011)

57. Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D.: Semi-supervised recur-
sive autoencoders for predicting sentiment distributions. In: Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John Mcintyre Con-



12

ference Centre, Edinburgh, Uk, A Meeting of Sigdat, A Special Interest Group of the ACL.
pp. 151–161 (2011)

58. Sun, F., Guo, J., Lan, Y., Xu, J., Cheng, X.: Sparse word embeddings using l-1 regularized
online learning. In: IJCAI 2016. pp. 2915–2921 (2016)

59. Teng, P., Jia, Y.: Voice activity detection using convolutive non-negative sparse coding. In:
2013 IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 7373–
7377. IEEE (2013)

60. Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. Neural Computation 14(10), 2497–2529
(2002)

61. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research 11(Dec), 3371–3408 (2010)

62. Vinyals, O., Deng, L.: Are sparse representations rich enough for acoustic modeling? In:
INTERSPEECH. pp. 2570–2573 (2012)

63. Vipperla, R., Bozonnet, S., Wang, D., Evans, N.: Robust speech recognition in multi-source
noise environments using convolutive non-negative matrix factorization. Proc. CHiME pp.
74–79 (2011)

64. Vipperla, R., Geiger, J.T., Bozonnet, S., Wang, D., Evans, N., Schuller, B., Rigoll, G.: Speech
overlap detection and attribution using convolutive non-negative sparse coding. In: 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp.
4181–4184. IEEE (2012)

65. Vyas, Y., Carpuat, M.: Sparse bilingual word representations for cross-lingual lexical entail-
ment. In: NAACL 2016. pp. 1187–1197 (2016)

66. Wang, D., Tejedor, J.: Heterogeneous convolutive non-negative sparse coding. In: INTER-
SPEECH. pp. 2150–2153 (2012)

67. Wang, D., Vipperla, R., Evans, N., Zheng, T.F.: Online non-negative convolutive pattern
learning for speech signals. IEEE Transactions on Signal Processing 61(1), 44–56 (2013)

68. Wang, D., Vipperla, R., Evans, N.W.: Online pattern learning for non-negative convolutive
sparse coding. In: INTERSPEECH. pp. 65–68 (2011)

69. Wu, C., Yang, H., Zhu, J., Zhang, J., King, I., Lyu, M.R.: Sparse poisson coding for high
dimensional document clustering. In: IEEE International Conference on Big Data (2013)

70. Xu, T., Wang, W., Dai, W.: Sparse coding with adaptive dictionary learning for underdeter-
mined blind speech separation. Speech Communication 55(3), 432–450 (2013)

71. Xu, Y., Du, J., Dai, L., Lee, C.: A regression approach to speech enhancement based on deep
neural networks. IEEE Trans. on audio, speech and langauge processing (2015)

72. Yogatama, D.: Sparse Models of Natural Language Text. Ph.D. thesis, Carnegie Mellon Uni-
versity (2015)

73. Yu, D., Deng, L.: Automatic Speech Recognition: A Deep Learning Approach. Springer
Publishing Company, Incorporated (2014)

74. Yu, D., Seide, F., Li, G., Deng, L.: Exploiting sparseness in deep neural networks for large
vocabulary speech recognition. In: Proc. ICASSP2012 (2012)

75. Yu, K., Lin, Y., Lafferty, J.: Learning image representations from the pixel level via hier-
archical sparse coding. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on. pp. 1713–1720. IEEE (2011)

76. Zen, H., Senior, A.W., Schuster, M.: Statistical parametric speech synthesis using deep neural
networks. In: ICASSP2013 (2013)

77. Zhang, A., Zhu, J., Zhang, B.: Sparse online topic models. In: WWW 2013 (2013)
78. Zhao, M., Wang, D., Zhang, Z., Zhang, X.: Music removal by denoising autoencoder in

speech recognition. In: APSIPA 2015 (2015)
79. Zhu, J., Xing, E.P.: Sparse topical coding. In: UAI 2012 (2012)


